-
公开(公告)号:CN111243045B
公开(公告)日:2023-04-07
申请号:CN202010024870.8
申请日:2020-01-10
Applicant: 杭州电子科技大学
IPC: G06T9/00
Abstract: 本发明公开了一种基于高斯混合模型先验变分自编码器的图像生成方法,包括步骤:S11.预设生成图像训练数据集;其中训练数据集由若干批次的训练数据组成;S12.搭建高斯混合模型先验的变分自编码器网络;S13.将预设的若干批次的训练数据上传至变分自编码器网络中,并确定变分自编码器网络的后验分布和先验分布;S14.确定高斯混合模型中高斯分量之间的关系,得到映射函数;S15.利用变分自编码器网络和得到的映射函数得到重构损失函数和KL散度函数,计算变分自编码器网络的后验分布和先验分布的损失函数,并对变分自编码器网络的参数进行更新以生成图像;S16.当生成图像时,将伪输入作为输入图像上传至变分自编码器网络,得到最终生成的图片。
-
公开(公告)号:CN111243045A
公开(公告)日:2020-06-05
申请号:CN202010024870.8
申请日:2020-01-10
Applicant: 杭州电子科技大学
IPC: G06T9/00
Abstract: 本发明公开了一种基于高斯混合模型先验变分自编码器的图像生成方法,包括步骤:S11.预设生成图像训练数据集;其中训练数据集由若干批次的训练数据组成;S12.搭建高斯混合模型先验的变分自编码器网络;S13.将预设的若干批次的训练数据上传至变分自编码器网络中,并确定变分自编码器网络的后验分布和先验分布;S14.确定高斯混合模型中高斯分量之间的关系,得到映射函数;S15.利用变分自编码器网络和得到的映射函数得到重构损失函数和KL散度函数,计算变分自编码器网络的后验分布和先验分布的损失函数,并对变分自编码器网络的参数进行更新以生成图像;S16.当生成图像时,将伪输入作为输入图像上传至变分自编码器网络,得到最终生成的图片。
-