基于多图卷积和GRU的不规则区域流量预测方法

    公开(公告)号:CN110991713B

    公开(公告)日:2022-04-01

    申请号:CN201911148344.6

    申请日:2019-11-21

    Abstract: 本发明公开了基于多图卷积和GRU的不规则区域流量预测方法,包括如下步骤:步骤一,将地域划分为N个不相连的不规则区域;步骤二,对历史轨迹数据进行时空简化,计算得到所有区域在每个时间步下的进入量和流出量;步骤三,建立区域间的多个关联图,构造相应的邻接矩阵,表示不规则区域间多样化的空间关联;步骤四,基于区域间的所述关联图设计多图卷积神经网络,融合区域间多样化的空间关联特征,得到多图卷积融合的结果;步骤五,基于多图卷积融合结果,采用GRU神经网络来捕获时间关联;步骤六,选择合适的损失函数,训练得到预测模型,通过所述预测模型预测得到每个区域的所述进入量和所述流出量。

    一种用于理解图卷积神经网络的可视分析方法

    公开(公告)号:CN110781933B

    公开(公告)日:2022-08-05

    申请号:CN201910973555.7

    申请日:2019-10-14

    Abstract: 本发明公开了一种用于理解图卷积神经网络的可视分析方法,包括如下步骤:步骤一,将输入的图结构数据集划分为训练集、验证集和测试集;步骤二,定义参数集合,包括隐藏层数集合和隐藏神经元数集合;步骤三,基于定义好的所述参数集合,训练得到一系列的图卷积神经网络模型;步骤四,设计隐藏层分析视图,展示隐藏层参数对分类准确率的影响;步骤五,设计损失和准确率视图,展示所述模型迭代训练过程中损失和分类准确率的变化;步骤六,采用GraphTSNE可视化方法计算图中节点的位置,设计图布局视图,呈现在不同训练步数下所述节点的预测情况和两个训练步数间所述节点预测情况的差异。

    基于OD数据感知城市动态结构演化规律的可视分析方法

    公开(公告)号:CN109254984B

    公开(公告)日:2020-10-23

    申请号:CN201811205749.4

    申请日:2018-10-16

    Abstract: 本发明公开了一种基于OD数据感知城市动态结构演化规律的可视分析方法,包括如下步骤:步骤1:收集OD数据,并存储在数据库中;步骤2:对位置进行聚类,对轨迹按位置聚类和小时聚合;步骤3:按小时构建位置聚类网络序列,表征每小时内各个聚类间的流量关系;步骤4:基于位置聚类网络序列,定义LDA模型,训练得到主题模型,并对主题基于重要程度排序;步骤5:设计主题‑时间视图,可视化不同主题在每个位置网络中的概率分布,展示不同主题随着时间的演化特征;步骤6:设计边关联视图,直观展示重要区域的空间分布和它们之间的流量关系;步骤7:设计边流量时间分布视图,展示边关联视图中每条弧线在不同时间步下出现的概率。

    基于POI和多源移动数据集的人群出行模式可视分析方法

    公开(公告)号:CN110119482A

    公开(公告)日:2019-08-13

    申请号:CN201910395683.8

    申请日:2019-05-13

    Abstract: 本发明公开了基于POI和多源移动数据集的人群出行模式可视分析方法,属于信息技术领域。包括1:获取出租车数据集、公共自行车数据集,POI数据集,并对数据进行预处理;2:划分时间段,将城市分割为区域,根据时间和区域划分结果,对数据进行聚合;3:对于出租车和公共自行车数据分别构建三维张量;4:采用非负张量分解方法分解三维张量,自动计算得到潜在的出行特征;5:基于张量分解结果,设计全局视图,包括时间图和热力图;6:设计区域视图,包含POI-mobility图、流量图和区域POI分布图;7:设计位置视图,包括位置POI占比图和位置POI分布图。通过本发明了解土地使用用途、掌握城市活动规律,有助于城市规划。

    基于多图卷积和GRU的不规则区域流量预测方法

    公开(公告)号:CN110991713A

    公开(公告)日:2020-04-10

    申请号:CN201911148344.6

    申请日:2019-11-21

    Abstract: 本发明公开了基于多图卷积和GRU的不规则区域流量预测方法,包括如下步骤:步骤一,将地域划分为N个不相连的不规则区域;步骤二,对历史轨迹数据进行时空简化,计算得到所有区域在每个时间步下的进入量和流出量;步骤三,建立区域间的多个关联图,构造相应的邻接矩阵,表示不规则区域间多样化的空间关联;步骤四,基于区域间的所述关联图设计多图卷积神经网络,融合区域间多样化的空间关联特征,得到多图卷积融合的结果;步骤五,基于多图卷积融合结果,采用GRU神经网络来捕获时间关联;步骤六,选择合适的损失函数,训练得到预测模型,通过所述预测模型预测得到每个区域的所述进入量和所述流出量。

    基于OD数据感知城市动态结构演化规律的可视分析方法

    公开(公告)号:CN109254984A

    公开(公告)日:2019-01-22

    申请号:CN201811205749.4

    申请日:2018-10-16

    Abstract: 本发明公开了一种基于OD数据感知城市动态结构演化规律的可视分析方法,包括如下步骤:步骤1:收集OD数据,并存储在数据库中;步骤2:对位置进行聚类,对轨迹按位置聚类和小时聚合;步骤3:按小时构建位置聚类网络序列,表征每小时内各个聚类间的流量关系;步骤4:基于位置聚类网络序列,定义LDA模型,训练得到主题模型,并对主题基于重要程度排序;步骤5:设计主题-时间视图,可视化不同主题在每个位置网络中的概率分布,展示不同主题随着时间的演化特征;步骤6:设计边关联视图,直观展示重要区域的空间分布和它们之间的流量关系;步骤7:设计边流量时间分布视图,展示边关联视图中每条弧线在不同时间步下出现的概率。

    基于POI和多源移动数据集的人群出行模式可视分析方法

    公开(公告)号:CN110119482B

    公开(公告)日:2021-04-06

    申请号:CN201910395683.8

    申请日:2019-05-13

    Abstract: 本发明公开了基于POI和多源移动数据集的人群出行模式可视分析方法,属于信息技术领域。包括1:获取出租车数据集、公共自行车数据集,POI数据集,并对数据进行预处理;2:划分时间段,将城市分割为区域,根据时间和区域划分结果,对数据进行聚合;3:对于出租车和公共自行车数据分别构建三维张量;4:采用非负张量分解方法分解三维张量,自动计算得到潜在的出行特征;5:基于张量分解结果,设计全局视图,包括时间图和热力图;6:设计区域视图,包含POI‑mobility图、流量图和区域POI分布图;7:设计位置视图,包括位置POI占比图和位置POI分布图。通过本发明了解土地使用用途、掌握城市活动规律,有助于城市规划。

    一种用于理解图卷积神经网络的可视分析方法

    公开(公告)号:CN110781933A

    公开(公告)日:2020-02-11

    申请号:CN201910973555.7

    申请日:2019-10-14

    Abstract: 本发明公开了一种用于理解图卷积神经网络的可视分析方法,包括如下步骤:步骤一,将输入的图结构数据集划分为训练集、验证集和测试集;步骤二,定义参数集合,包括隐藏层数集合和隐藏神经元数集合;步骤三,基于定义好的所述参数集合,训练得到一系列的图卷积神经网络模型;步骤四,设计隐藏层分析视图,展示隐藏层参数对分类准确率的影响;步骤五,设计损失和准确率视图,展示所述模型迭代训练过程中损失和分类准确率的变化;步骤六,采用GraphTSNE可视化方法计算图中节点的位置,设计图布局视图,呈现在不同训练步数下所述节点的预测情况和两个训练步数间所述节点预测情况的差异。

Patent Agency Ranking