-
公开(公告)号:CN116578923A
公开(公告)日:2023-08-11
申请号:CN202310603996.4
申请日:2023-05-26
Applicant: 杭州市滨江区浙工大网络空间安全创新研究院
IPC: G06F18/241 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于傅里叶频谱的信号对抗样本检测方法,属于机器学习的信号安全技术领域,包括如下步骤:制作良性样本数据集和对抗样本数据集,分别提取良性样本数据集和对抗样本数据集的傅里叶频谱特征并各自进行特征融合,组成特征数据集并划分特征训练集和特征测试集;构建检测网络,利用特征训练集对检测网络进行二分类训练,得到最优检测网络模型;将特征测试集输入最优检测网络模型,输出检测结果。利用离散傅里叶变换对数据进行处理,分别提取良性样本和对抗样本特征并各自进行特征融合,有效缩短方法过程;并利用复数全连接网络进行分类,更贴合电磁信号的特征,可以有效提高检测的精度。