-
公开(公告)号:CN119167170A
公开(公告)日:2024-12-20
申请号:CN202411232039.6
申请日:2024-09-04
Applicant: 暨南大学
IPC: G06F18/241 , G06F18/22 , G06F18/213 , G06N3/0464 , G06N3/045 , G06N3/096 , G06N3/09
Abstract: 本发明公开了一种基于迁移学习的跨时段脑电运动想象分类方法,具体涉及运动脑机接口领域,包括:S1.利用数据预处理得到源域与目标域脑电数据;S2.利用基于注意力的可分离卷积神经网络提取频率、空间和时间信息;S3.利用监督学习最小化源域样本数据的分类损失;S4.利用迁移学习最大化源域与目标与样本特征之间的相似性,以训练适用于跨时段脑电的神经网络;S5.用训练的模型对目标域进行分类,并与选定几种常用先进算法对比在公开数据集上的运动想象分类效果。并验证了跨时段问题在运动脑机接口中普遍存在。发明提出的方法提供科学可靠的运动想象分类方案,构建了比选定几种常用先进算法更高准确度的运动想象分类模型。