-
公开(公告)号:CN117436130B
公开(公告)日:2024-04-02
申请号:CN202311744142.4
申请日:2023-12-19
Applicant: 暨南大学
IPC: G06F21/62 , G06F16/901
Abstract: 本发明涉及数据隐私保护技术领域,特别是涉及一种基于差分隐私的有向图数据安全发布方法,包括:获取图数据,构建有向图并提取各级别的初始节点度信息;构建组合差分隐私机制,向所述节点度信息中添加噪声,获取节点度信息,计算所述节点度信息的敏感度;基于所述敏感度,采用分组策略对所述节点度信息进行降低噪声处理;引入自适应算法优化所述节点度信息,获取最终节点度信息;将所述最终节点度信息输入生成图模型,生成隐私有向图。本发明能够有效保护有向图数据隐私,保留原始图的效用。
-
公开(公告)号:CN117436130A
公开(公告)日:2024-01-23
申请号:CN202311744142.4
申请日:2023-12-19
Applicant: 暨南大学
IPC: G06F21/62 , G06F16/901
Abstract: 本发明涉及数据隐私保护技术领域,特别是涉及一种基于差分隐私的有向图数据安全发布方法,包括:获取图数据,构建有向图并提取各级别的初始节点度信息;构建组合差分隐私机制,向所述节点度信息中添加噪声,获取节点度信息,计算所述节点度信息的敏感度;基于所述敏感度,采用分组策略对所述节点度信息进行降低噪声处理;引入自适应算法优化所述节点度信息,获取最终节点度信息;将所述最终节点度信息输入生成图模型,生成隐私有向图。本发明能够有效保护有向图数据隐私,保留原始图的效用。
-