-
公开(公告)号:CN116524283A
公开(公告)日:2023-08-01
申请号:CN202310779764.4
申请日:2023-06-29
Applicant: 无锡学院
IPC: G06V10/764 , G06N3/0464 , G06N3/08 , G06V10/774 , G06V10/80 , G06V10/82
Abstract: 本发明公开了一种农业虫害图像检测分类方法及系统,所述方法包括以下步骤:S1:对获取到的待分类农业虫害图像预处理,将预处理后的待分类农业虫害图像划分为训练集和测试集;S2:将图像分类模型作为农业虫害图像的分类模型,所述图像分类模型为改进后的YoloX模型,以YoloX模型为基本架构,darknet53特征提取模块替换为Swin‑Transformer模块、在neck网络的FPN特征融合模块加入DG模块、CLFM模块,设置Focalloss损失函数;S3:利用训练集对图像分类模型进行训练;S4:利用训练好的图像分类模型对测试集进行检测,输出农业虫害图像检测分类结果。本发明实现了提升农业虫害图像检测分类准确率,对YoloX模型改进,引入Focalloss目标损失函数,提高农业虫害图像的检测分类效果、适应性。