-
公开(公告)号:CN119377625A
公开(公告)日:2025-01-28
申请号:CN202411946980.4
申请日:2024-12-27
Applicant: 数据堂(北京)科技股份有限公司
IPC: G06F18/21 , G06F18/25 , G06N3/0442 , G06F18/10
Abstract: 本申请公开了一种多维度的大模型数据质量评测方法及系统,其在提取出满足最低内在质量要求的数据集和参考数据集中的各个数据特征之后,基于数据集中各个数据样本之间的信息场效应,对各个数据样本进行特征更新和上下文语义关联强化处理,从而提高各个数据样本的语义特征表达能力,实现更为准确的数据质量评估。这样,通过引入数据集的上下文关联信息,能够更准确地理解各个数据样本的语义信息,进而提升整体数据质量评估的准确性。
-
公开(公告)号:CN115810137A
公开(公告)日:2023-03-17
申请号:CN202310087037.1
申请日:2023-02-09
Applicant: 数据堂(北京)科技股份有限公司 , 河北数云堂智能科技有限公司
IPC: G06V10/776 , G06V40/16 , G06V10/82
Abstract: 本发明公开了一种交互式人工智能技术评测方案的构建方法,涉及人工智能测评技术领域,方法包括以下步骤:步骤S1:构建数据层,数据层包括评测数据库、评测工具库、评测标准库和基准模型库;步骤S2:构建封装层;步骤S3:构建执行层。本发明基于评测工具、评测数据、评测标准、基准模型等要素,快速构建一个人工智能评测方案,从而解决人工智能评测经验和方法无法重复利用、评测要求技术门槛高的问题,提供了交互式的配置环境,支持用户通过拖拽配置的可视化方式快速构建复杂的评测方案流程,从而实现为不同类型人工智能任务快速开发新的评测方案。
-
公开(公告)号:CN113205163B
公开(公告)日:2021-11-19
申请号:CN202110764998.2
申请日:2021-07-07
Applicant: 数据堂(北京)科技股份有限公司
Abstract: 本发明公开了一种数据标注方法及装置,该方法包括:利用无监督学习算法进行冷启动,对原始的无标签数据进行初级分类,生成弱和伪标签数据信息;对伪标签数据信息进行校验标注;对预设数量的弱标签数据信息进行标注,获得部分已标注数据,基于弱监督学习算法和部分已标注数据,对剩余的弱标签数据信息进行预标注,生成预标注结果;对预标注结果进行半监督学习算法的样本筛选,获得精品数据集;对精品数据集进行数据补充,获得全标签数据集;利用全标签数据集对无监督学习算法、弱监督学习算法和半监督学习算法进行算法迭代,获得优化的无监督学习算法、弱监督学习算法和半监督学习算法。本发明可以大幅减少人工标注成本,并提高数据标注效率。
-
公开(公告)号:CN110580917A
公开(公告)日:2019-12-17
申请号:CN201910870667.X
申请日:2019-09-16
Applicant: 数据堂(北京)科技股份有限公司
Abstract: 本发明提供一种语音数据质量检测方法、装置、服务器及存储介质,以帧为单位对待进行质量检测的语音数据进行分割得到至少一个语音帧,计算语音帧在预先设置的至少一个频段中每个频段的频谱能量值,并将利用至少一个语音帧中每个语音帧在频段的频谱能量值计算语音数据在频段的目标频谱能量值,分析语音数据在各个频段的目标频谱能量值得到语音数据的质量检测结果。本发明提供的技术方案通过对语音数据在不同频段的目标频谱能量值的计算可分析出语音数据的语音质量检测结果,实现了对语音数据质量的检测。
-
公开(公告)号:CN116483733A
公开(公告)日:2023-07-25
申请号:CN202310687517.1
申请日:2023-06-12
Applicant: 数据堂(北京)科技股份有限公司 , 河北数云堂智能科技有限公司
Abstract: 本发明公开了一种多维度人工智能产品评测方法及装置,该方法包括:确定人工智能产品的评测对象,所述评测对象包括人工智能模型、人工智能算法和人工智能硬件;确定每个评测对象在每个评测维度的评测项,所述评测维度包括功能评测、性能评测和安全性评测;采集每个评测对象在每个评测维度的评测项的评测数据,按照每个评测项的评测方法,对该评测对象进行评测,获得该评测对象在该评测维度的该评测项的评测结果;其中,评测对象在功能评测的评测项的评测方法为基于环境条件集合的评测方法。本发明可以针对人工智能技术评测对象,实现人工智能的全周期评测。
-
公开(公告)号:CN115830419A
公开(公告)日:2023-03-21
申请号:CN202310087039.0
申请日:2023-02-09
Applicant: 数据堂(北京)科技股份有限公司 , 河北数云堂智能科技有限公司
IPC: G06V10/776 , G06V40/16 , G06V10/82
Abstract: 本发明公开了一种数据驱动式人工智能技术评测系统及方法,涉及人工智能评测技术领域,系统包括评测对象单元、评测过程单元、评测结果单元和算法优化单元,评测对象单元的数据信息传递至评测过程单元评测,评测过程单元评测结果传递至评测结果单元;算法优化单元接收评测结果数据,并将接收到的待优化的评测结果数据传递至评测对象单元进行优化;方法步骤包括生成评测任务;执行评测任务;生成评测结果。本发明针对不同技术领域和不同应用场景下的评测对象,可以快速选择适合的评测工具、评测数据、评测标准和基准模型后执行评测,输出评测结果,并推动评测对象的算法优化,从而极大降低用户进行人工智能评测的技术门槛。
-
公开(公告)号:CN120030132A
公开(公告)日:2025-05-23
申请号:CN202510510268.8
申请日:2025-04-23
Applicant: 数据堂(北京)科技股份有限公司
IPC: G06F16/3329 , G06F40/205 , G06F40/30
Abstract: 本申请涉及智能问答技术领域,其具体地公开了一种基于多模态大模型的问答数据处理方法及系统,其采用基于深度学习的多模态数据处理技术对用户输入的文本问题和图像模态上下文进行语义解析,分别提取出文本问题和图像模态上下文的语义特征,接着对两者进行线性投影以实现特征对齐,并引入跨模态特征全域关联交互机制,挖掘文本问题与图像模态上下文之间的深层次语义关联,实现对文本问题和图像模态上下文信息的有效融合,进而利用大语言模型的推理能力,生成与文本问题相关的文本答案。通过这种方式,能够显著提高问答系统对多模态信息的理解和处理能力,生成与文本问题紧密相关且逻辑完整的文本答案,满足用户对于多模态问答场景下的信息需求。
-
公开(公告)号:CN115810137B
公开(公告)日:2023-06-02
申请号:CN202310087037.1
申请日:2023-02-09
Applicant: 数据堂(北京)科技股份有限公司 , 河北数云堂智能科技有限公司
IPC: G06V10/776 , G06V40/16 , G06V10/82
Abstract: 本发明公开了一种交互式人工智能技术评测方案的构建方法,涉及人工智能测评技术领域,方法包括以下步骤:步骤S1:构建数据层,数据层包括评测数据库、评测工具库、评测标准库和基准模型库;步骤S2:构建封装层;步骤S3:构建执行层。本发明基于评测工具、评测数据、评测标准、基准模型等要素,快速构建一个人工智能评测方案,从而解决人工智能评测经验和方法无法重复利用、评测要求技术门槛高的问题,提供了交互式的配置环境,支持用户通过拖拽配置的可视化方式快速构建复杂的评测方案流程,从而实现为不同类型人工智能任务快速开发新的评测方案。
-
公开(公告)号:CN113204795B
公开(公告)日:2021-09-24
申请号:CN202110764949.9
申请日:2021-07-07
Applicant: 数据堂(北京)科技股份有限公司
IPC: G06F21/62 , G06F16/27 , G06F16/2458
Abstract: 本发明公开了一种基于联邦数据及联邦服务的数据共享方法及装置,该方法包括:接收数据使用方提交的模型运算需求;基于联邦节点能力数据库,根据模型运算需求匹配生成最优决策结果;基于最优决策结果选择计算模型,将公钥和计算模型发送至相应联邦节点;接收相应联邦节点返回的计算结果,其中,计算结果为联邦节点根据自身的联邦数据基于计算模型计算得出并通过公钥加密后的结果;将结果进行解密返回给数据使用方;计算参与计算的每个联邦节点的数据收益,提供给数据提供方;将计算过程数据存储在区块链的记账节点上;数据提供方作为联邦节点。本发明通过联邦服务机制来实现对各个数据使用方需求的决策生成,进而实现服务的联邦化。
-
公开(公告)号:CN113204795A
公开(公告)日:2021-08-03
申请号:CN202110764949.9
申请日:2021-07-07
Applicant: 数据堂(北京)科技股份有限公司
IPC: G06F21/62 , G06F16/27 , G06F16/2458
Abstract: 本发明公开了一种基于联邦数据及联邦服务的数据共享方法及装置,该方法包括:接收数据使用方提交的模型运算需求;基于联邦节点能力数据库,根据模型运算需求匹配生成最优决策结果;基于最优决策结果选择计算模型,将公钥和计算模型发送至相应联邦节点;接收相应联邦节点返回的计算结果,其中,计算结果为联邦节点根据自身的联邦数据基于计算模型计算得出并通过公钥加密后的结果;将结果进行解密返回给数据使用方;计算参与计算的每个联邦节点的数据收益,提供给数据提供方;将计算过程数据存储在区块链的记账节点上;数据提供方作为联邦节点。本发明通过联邦服务机制来实现对各个数据使用方需求的决策生成,进而实现服务的联邦化。
-
-
-
-
-
-
-
-
-