用于文本分类的神经网络系统的训练方法及装置

    公开(公告)号:CN112100387B

    公开(公告)日:2021-02-19

    申请号:CN202011269071.3

    申请日:2020-11-13

    Abstract: 本说明书实施例提供一种用于文本分类的神经网络系统的训练方法,该神经网络系统包括文本表征网络、特征提取层和分类网络。该训练方法包括:首先,获取训练文本集,该训练文本集对应K个类别;接着,针对该训练文本集中任一的第一训练文本,利用上述文本表征网络对其进行处理,得到第一文本向量;然后,利用上述特征提取层,将该第一文本向量分别与对应所述K个类别的K个类别特征向量进行组合操作,得到K个特征提取向量;再接着,基于该K个特征提取向量和上述分类网络,确定分类预测结果;再然后,基于该分类预测结果和上述第一训练文本的类别标签,训练上述神经网络系统。

    用于文本分类的神经网络系统的训练方法及装置

    公开(公告)号:CN112100387A

    公开(公告)日:2020-12-18

    申请号:CN202011269071.3

    申请日:2020-11-13

    Abstract: 本说明书实施例提供一种用于文本分类的神经网络系统的训练方法,该神经网络系统包括文本表征网络、特征提取层和分类网络。该训练方法包括:首先,获取训练文本集,该训练文本集对应K个类别;接着,针对该训练文本集中任一的第一训练文本,利用上述文本表征网络对其进行处理,得到第一文本向量;然后,利用上述特征提取层,将该第一文本向量分别与对应所述K个类别的K个类别特征向量进行组合操作,得到K个特征提取向量;再接着,基于该K个特征提取向量和上述分类网络,确定分类预测结果;再然后,基于该分类预测结果和上述第一训练文本的类别标签,训练上述神经网络系统。

Patent Agency Ranking