-
公开(公告)号:CN103922461B
公开(公告)日:2016-08-17
申请号:CN201410018309.3
申请日:2014-01-13
Applicant: 扬州大学
CPC classification number: Y02W10/15
Abstract: 本发明涉及一种监测污水生物处理氧吸收速率和控制曝气量的方法。本发明测定在不同空气流量q、温度和设定污泥浓度条件下,曝气充氧的氧转移系数KLa(d?1)和饱和溶解氧浓度mg/L,求出氧转移系数KLa和供气量q、温度T,在已知设定氧转移系数KLa(d?1)和溶解氧浓度的条件下,通过拟合某时段内的溶解氧变化曲线,利用上一时段的氧吸收速率,作为下一阶段可能的氧吸收速率,所需要的下一时段的最低曝气量q,在接下来的时段内,空气量q,溶解氧变化曲线,求出该时段氧吸收速率。本发明克服了现有技术存在的设备投资大、构造复杂或测试频率低等缺陷。本发明不增加额外的副反应器、溶解氧探头和污水传输设备的前提下,仅利用溶解氧探头就可连续监测OUR。
-
公开(公告)号:CN103922461A
公开(公告)日:2014-07-16
申请号:CN201410018309.3
申请日:2014-01-13
Applicant: 扬州大学
CPC classification number: Y02W10/15
Abstract: 本发明涉及一种监测污水生物处理氧吸收速率和控制曝气量的方法。本发明测定在不同空气流量q、温度和设定污泥浓度条件下,曝气充氧的氧转移系数KLa(d-1)和饱和溶解氧浓度mg/L,求出氧转移系数KLa和供气量q、温度T,在已知设定氧转移系数KLa(d-1)和溶解氧浓度的条件下,通过拟合某时段内的溶解氧变化曲线,利用上一时段的氧吸收速率,作为下一阶段可能的氧吸收速率,所需要的下一时段的最低曝气量q,在接下来的时段内,空气量q,溶解氧变化曲线,求出该时段氧吸收速率。本发明克服了现有技术存在的设备投资大、构造复杂或测试频率低等缺陷。本发明不增加额外的副反应器、溶解氧探头和污水传输设备的前提下,仅利用溶解氧探头就可连续监测OUR。
-
公开(公告)号:CN103632064B
公开(公告)日:2017-11-14
申请号:CN201310694701.5
申请日:2013-12-17
Applicant: 扬州大学
Abstract: 本发明提供一种污水生物处理活性污泥模型自适应参数校准方法,其具体步骤如下:步骤一、建立活性污泥数学模型;步骤二、数学模型参数敏感度分析;步骤三、活性污泥数学模型参数的分类,根据步骤二的分析结果,将模型参数分为非敏感模型参数和敏感模型参数;步骤四、设置不同的测量传感器组合;步骤五、活性污泥模型参数自适应校准,根据步骤四所确定的传感器组合,应用扩展卡尔曼滤波器和随机漫步理论,对敏感模型参数进行估计,可以连续校准模型参数,能够使模型预测更加精准地反映污水生物处理过程,在测定不同传感器组合条件下的参数估计效果后,选择成本较低,参数估计效果较好的传感器组合作为实际应用。
-
公开(公告)号:CN103632064A
公开(公告)日:2014-03-12
申请号:CN201310694701.5
申请日:2013-12-17
Applicant: 扬州大学
Abstract: 本发明提供一种污水生物处理活性污泥模型自适应参数校准方法,其具体步骤如下:步骤一、建立活性污泥数学模型;步骤二、数学模型参数敏感度分析;步骤三、活性污泥数学模型参数的分类,根据步骤二的分析结果,将模型参数分为非敏感模型参数和敏感模型参数;步骤四、设置不同的测量传感器组合;步骤五、活性污泥模型参数自适应校准,根据步骤四所确定的传感器组合,应用扩展卡尔曼滤波器和随机漫步理论,对敏感模型参数进行估计,可以连续校准模型参数,能够使模型预测更加精准地反映污水生物处理过程,在测定不同传感器组合条件下的参数估计效果后,选择成本较低,参数估计效果较好的传感器组合作为实际应用。
-
-
-