基于半监督学习在多维度雷达数据下的冰雹识别方法

    公开(公告)号:CN113095442B

    公开(公告)日:2021-09-10

    申请号:CN202110624140.6

    申请日:2021-06-04

    Abstract: 本发明提供一种基于半监督学习在多维度雷达数据下的冰雹识别方法,包括:S1:获取标注样本集,随机抽出监督样本集,暴雨样本训练集与冰雹样本训练集,获取未标注数据集并随机均分为q份第一样本;S2:计算各簇训练集的聚类中心;S3:对一份第一样本聚类划分到对应簇中,更新聚类中心;S4:迭代,获得此时的各簇聚类中心以及对应簇的置信度;S5:监督样本集重复步骤S2‑S4,获得监督样本集对各聚类中心的监督置信度,归类至对应簇中;S6:判断第一样本是否更新到簇中,重复S2‑S6至第一样本处理完毕;S7:将最佳的聚类中心作为识别模型输入,得各样本对各簇的置信度、进行分类。该方法有效提高冰雹识别的准确率、降低误报率。

    基于半监督学习在多维度雷达数据下的冰雹识别方法

    公开(公告)号:CN113095442A

    公开(公告)日:2021-07-09

    申请号:CN202110624140.6

    申请日:2021-06-04

    Abstract: 本发明提供一种基于半监督学习在多维度雷达数据下的冰雹识别方法,包括:S1:获取标注样本集,随机抽出监督样本集,暴雨样本训练集与冰雹样本训练集,获取未标注数据集并随机均分为q份第一样本;S2:计算各簇训练集的聚类中心;S3:对一份第一样本聚类划分到对应簇中,更新聚类中心;S4:迭代,获得此时的各簇聚类中心以及对应簇的置信度;S5:监督样本集重复步骤S2‑S4,获得监督样本集对各聚类中心的监督置信度,归类至对应簇中;S6:判断第一样本是否更新到簇中,重复S2‑S6至第一样本处理完毕;S7:将最佳的聚类中心作为识别模型输入,得各样本对各簇的置信度、进行分类。该方法有效提高冰雹识别的准确率、降低误报率。

Patent Agency Ranking