-
公开(公告)号:CN117935060B
公开(公告)日:2024-05-28
申请号:CN202410323876.3
申请日:2024-03-21
Applicant: 成都信息工程大学
IPC: G06V20/10 , G06V10/44 , G06V10/771 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于深度学习的洪水区域检测方法,属于图像数据处理领域,包括构造数据集;构造洪水区域检测网络;用数据集训练洪水区域检测网络得到洪水区域检测模型,用于待识别的洪水图像中的洪水区域检测。本发明中针对洪水图像中洪水占比大、洪水边缘和淹没物场景复杂的问题,用残差图像金字塔模块对深层次特征中的感受野进行进一步扩大,使得模型注重于全局;多个浅层特征融合多输入坐标注意力机制,获得通道和两个空间方向的特征信息,使得模型注重于分割细节,由特征融合模块对获得的深层特征和浅层特征进行更好的特征选择与结合,将语义信息和空间方向相关的细节信息有效结合,能更好地分割洪水区域,在整体上提高分割精度。
-
公开(公告)号:CN117935060A
公开(公告)日:2024-04-26
申请号:CN202410323876.3
申请日:2024-03-21
Applicant: 成都信息工程大学
IPC: G06V20/10 , G06V10/44 , G06V10/771 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于深度学习的洪水区域检测方法,属于图像数据处理领域,包括构造数据集;构造洪水区域检测网络;用数据集训练洪水区域检测网络得到洪水区域检测模型,用于待识别的洪水图像中的洪水区域检测。本发明中针对洪水图像中洪水占比大、洪水边缘和淹没物场景复杂的问题,用残差图像金字塔模块对深层次特征中的感受野进行进一步扩大,使得模型注重于全局;多个浅层特征融合多输入坐标注意力机制,获得通道和两个空间方向的特征信息,使得模型注重于分割细节,由特征融合模块对获得的深层特征和浅层特征进行更好的特征选择与结合,将语义信息和空间方向相关的细节信息有效结合,能更好地分割洪水区域,在整体上提高分割精度。
-