深度神经网络的低资源占用适配和个性化

    公开(公告)号:CN106104673B

    公开(公告)日:2019-10-18

    申请号:CN201580012496.7

    申请日:2015-02-27

    Abstract: 本发明提供了对用于自动语音识别的深度神经网络(DNN)模型的适配和个性化。可以在诸如话音搜索或短消息命令之类的ASR任务中接收包括一个或多个扬声器的语音特征的话语。然后,可以将分解方法应用于该DNN模型中的原始矩阵。响应于应用该分解方法,该原始矩阵可以被变换为比该原始矩阵更小的多个新矩阵。然后,可以将方阵加到所述新矩阵。然后,可以将扬声器特定参数存储在该方阵中。然后,可以通过更新该方阵来对该DNN模型进行适配。这个过程可以被应用于该DNN模型中的所有多个原始矩阵。经适配的DNN模型可以包括与原始DNN模型中接收的参数相比数量减少的参数。

    深度神经网络的低资源占用适配和个性化

    公开(公告)号:CN106104673A

    公开(公告)日:2016-11-09

    申请号:CN201580012496.7

    申请日:2015-02-27

    Abstract: 本发明提供了对用于自动语音识别的深度神经网络(DNN)模型的适配和个性化。可以在诸如话音搜索或短消息命令之类的ASR任务中接收包括一个或多个扬声器的语音特征的话语。然后,可以将分解方法应用于该DNN模型中的原始矩阵。响应于应用该分解方法,该原始矩阵可以被变换为比该原始矩阵更小的多个新矩阵。然后,可以将方阵加到所述新矩阵。然后,可以将扬声器特定参数存储在该方阵中。然后,可以通过更新该方阵来对该DNN模型进行适配。这个过程可以被应用于该DNN模型中的所有多个原始矩阵。经适配的DNN模型可以包括与原始DNN模型中接收的参数相比数量减少的参数。

Patent Agency Ranking