一种基于特征重标定生成对抗网络的图像分类方法

    公开(公告)号:CN108805188B

    公开(公告)日:2020-08-21

    申请号:CN201810534540.6

    申请日:2018-05-29

    Abstract: 一种基于特征重标定生成对抗网络的图像分类方法,适用于机器学习领域。将待分类的图像数据输入对抗网络模型进行网络训练;卷积网络构成的生成器和鉴别器;初始化随机噪声,将随机噪声输入生成器中;在生成器中利用卷积网络对随机噪声进行多层反卷积运算最终得到生成样本;将生成样本和和真实样本输入鉴别器;在鉴别器中利用卷积网络对输入样本进行卷积与池化操作从而得到特征图,在卷积网络中间层引入压缩激活SENet模块对特征图进行校准,得到校准后的特征图,使用全局平均池化,最终输出图像数据分类。在鉴别器的中间层引入SENet模块,自动学习每一个特征通道的重要程度,提取任务相关有用的特征抑制任务无关的特征,从而提高半监督学习表现。

    一种基于分段损失的生成对抗网络方法

    公开(公告)号:CN108665058A

    公开(公告)日:2018-10-16

    申请号:CN201810321286.1

    申请日:2018-04-11

    CPC classification number: G06N3/0454 G06K9/00926

    Abstract: 一种基于分段损失的生成对抗网络方法,步骤如下:1、参数初始化:设批大小m=100,超参数k=1,用Xavier方法进行参数初始化,确定最大迭代次数和损失切换迭代次数参数T,令迭代次数epoch=0;2、训练判别器参数:令i=1,i为循环变量;3、训练生成器参数;epoch=epoch+1,判断epoch是否大于最大迭代次数,如小于最大迭代次数,则重复步骤2和3,如满足,则训练结束。该方法能实现生成器在不同的训练阶段采用不同形式的损失函数,一定程度上弥补了单一损失形式下GAN理论的不足,使网络训练更加稳定;通过引入真实样本与生成样本之间特征级损失,使判别器提取的特征更加鲁棒。

    一种基于分段损失的生成对抗网络方法

    公开(公告)号:CN108665058B

    公开(公告)日:2021-01-05

    申请号:CN201810321286.1

    申请日:2018-04-11

    Abstract: 一种基于分段损失的生成对抗网络方法,步骤如下:1、参数初始化:设批大小m=100,超参数k=1,用Xavier方法进行参数初始化,确定最大迭代次数和损失切换迭代次数参数T,令迭代次数epoch=0;2、训练判别器参数:令i=1,i为循环变量;3、训练生成器参数;epoch=epoch+1,判断epoch是否大于最大迭代次数,如小于最大迭代次数,则重复步骤2和3,如满足,则训练结束。该方法能实现生成器在不同的训练阶段采用不同形式的损失函数,一定程度上弥补了单一损失形式下GAN理论的不足,使网络训练更加稳定;通过引入真实样本与生成样本之间特征级损失,使判别器提取的特征更加鲁棒。

    一种基于特征重标定生成对抗网络的图像分类方法

    公开(公告)号:CN108805188A

    公开(公告)日:2018-11-13

    申请号:CN201810534540.6

    申请日:2018-05-29

    CPC classification number: G06K9/6271 G06N3/0454 G06N3/08

    Abstract: 一种基于特征重标定生成对抗网络的图像分类方法,适用于机器学习领域。将待分类的图像数据输入对抗网络模型进行网络训练;卷积网络构成的生成器和鉴别器;初始化随机噪声,将随机噪声输入生成器中;在生成器中利用卷积网络对随机噪声进行多层反卷积运算最终得到生成样本;将生成样本和和真实样本输入鉴别器;在鉴别器中利用卷积网络对输入样本进行卷积与池化操作从而得到特征图,在卷积网络中间层引入压缩激活SENet模块对特征图进行校准,得到校准后的特征图,使用全局平均池化,最终输出图像数据分类。在鉴别器的中间层引入SENet模块,自动学习每一个特征通道的重要程度,提取任务相关有用的特征抑制任务无关的特征,从而提高半监督学习表现。

Patent Agency Ranking