一种基于离散化数据的大脑影像分类方法

    公开(公告)号:CN116563646A

    公开(公告)日:2023-08-08

    申请号:CN202310773717.9

    申请日:2023-06-28

    Abstract: 本发明涉及数据分类处理技术领域,公开了一种基于离散化数据的大脑影像分类方法,包括:将原始大脑影像数据集划分为原始训练集、原始验证集和原始测试集;构建包括数据集离散化前后的信息损失、分类错误率和离散数据复杂程度的多目标函数,对多目标函数的最优解进行搜索,得到离散化方案;根据离散化方案分别对原始训练集、原始验证集和原始测试集进行离散化;对离散训练集和离散验证集进行特征选择,利用特征选择结果,对离散训练集和离散测试集进行特征精简,得到精简离散训练集和精简离散测试集;利用精简离散训练集训练一个分类器对精简离散测试集进行分类,得到大脑影像数据分类结果。本发明能够提高大脑影像分类任务的分类准确率和效率。

    一种基于离散化数据的大脑影像分类方法

    公开(公告)号:CN116563646B

    公开(公告)日:2023-10-13

    申请号:CN202310773717.9

    申请日:2023-06-28

    Abstract: 本发明涉及数据分类处理技术领域,公开了一种基于离散化数据的大脑影像分类方法,包括:将原始大脑影像数据集划分为原始训练集、原始验证集和原始测试集;构建包括数据集离散化前后的信息损失、分类错误率和离散数据复杂程度的多目标函数,对多目标函数的最优解进行搜索,得到离散化方案;根据离散化方案分别对原始训练集、原始验证集和原始测试集进行离散化;对离散训练集和离散验证集进行特征选择,利用特征选择结果,对离散训练集和离散测试集进行特征精简,得到精简离散训练集和精简离散测试集;利用精简离散训练集训练一个分类器对精简离散测试集进行分类,得到大脑影像数据分类结果。本发明能够提高大脑影像分类任务的分类准确率和效率。

Patent Agency Ranking