面向面部表情识别的双通道卷积神经网络

    公开(公告)号:CN108491835B

    公开(公告)日:2021-11-30

    申请号:CN201810599295.7

    申请日:2018-06-12

    申请人: 常州大学

    IPC分类号: G06K9/00 G06N3/04

    摘要: 本发明公开了一种双通道卷积神经网络对人脸面部表情识别的方法,首先针对不同的输入图像进行预处理包括人脸检测、旋转校正、降采样以及数据样本扩充(若输入RGB图像,则将其灰度化以降低计算复杂度),从而提高人脸检测精度。其次对于样本扩充后的灰度图像,计算对应的LBP图像,从而构成双通道样本集,用于后续的模型训练与测试。然后利用双通道特征提取网络(Binary Channel‑Feature Extraction Network,BC‑FEN)进行人脸图像全局及局部特征的有效提取。最后利用加权融合分类网络(Weighted Merge Classify Network,WMCN)完成人脸图像的特征融合及表情分类,提高了人脸表情识别精度。

    加权卷积自编码长短期记忆网络人群异常检测方法

    公开(公告)号:CN108805015A

    公开(公告)日:2018-11-13

    申请号:CN201810385430.8

    申请日:2018-04-26

    申请人: 常州大学

    IPC分类号: G06K9/00 G06N3/04

    CPC分类号: G06K9/00778 G06N3/049

    摘要: 本发明公开了一种加权卷积自编码长短期记忆网络(Weighted convolutional autoencoder‑long short‑term memory network,WCAE‑LSTM网络)进行异常检测的方法,致力于学习移动行人的生成模型进行异常检测及定位,以保证公共安全。本发明提出一种新颖的双通道框架,利用WCAE‑LSTM网络分别学习原始数据通道及对应的光流通道的生成模式并对数据进行重构,基于重构误差进行异常检测。此外,针对复杂背景问题,本发明提出采用分块鲁棒主成分分析分解将稀疏前景与低秩背景分离,根据得到的背景信息设计加权欧几里德损失函数,从而抑制背景噪声。本发明设计的WCAE‑LSTM网络不仅能从全局角度检测异常,还能从局部角度粗略地定位异常区域,并通过联合考虑全局‑局部异常分析和光流异常分析的结果,最终实现对异常事件鲁棒、准确地检测。

    一种利用多尺度多任务卷积神经网络对静止图像进行人群计数的方法

    公开(公告)号:CN107967451A

    公开(公告)日:2018-04-27

    申请号:CN201711179075.0

    申请日:2017-11-23

    申请人: 常州大学

    摘要: 本发明公开了一种利用多尺度多任务卷积神经网络对静止图像进行人群计数的方法,首先将逆高斯密度图与原始高斯密度图结合,组成组合密度图;然后对输入图像不重叠采样获得若干图像子块,并基于图像子块及其对应的真实组合密度图训练网络;以相同步幅对输入图像重叠采样,将MMCNN预测得到的每个图像子块的组合密度图叠加,重构完整人群图像的组合密度图,进而实现人群计数。此外,针对人群尺度差异问题,本发明通过一种分尺度损失函数衡量不同尺度网络学习到的特征。同时,本发明提出的网络以多任务的方式同时预测人群组合密度图、密度级别以及前景/背景分类,由此改善组合密度图的估计准确性,从而缓减人群密度不均问题。

    一种基于长短期记忆-加权神经网络对视频人群计数的方法

    公开(公告)号:CN108615027B

    公开(公告)日:2021-10-08

    申请号:CN201810446463.9

    申请日:2018-05-11

    申请人: 常州大学

    IPC分类号: G06K9/00 G06N3/04 G06N3/08

    摘要: 本发明公开了一种基于长短期记忆的加权卷积神经网络对视频中的人群进行计数的方法,首先根据不同场景估计透视图,进而生成人群的自适应密度图;然后对连续多帧图像降采样后输入神经网络,并基于图像及其对应的真实自适应密度图训练网络;利用训练好的网络估计输入图像的密度图,并根据密度图预测人数。针对场景中人群的尺度差异,本发明通过一种分尺度损失函数衡量网络学习到的不同尺度特征。针对人群分布不均匀问题,本发明通过一种加权损失函数权衡不同区域的贡献。同时,本发明通过长短期记忆获取相邻帧之间的关联信息,并通过平滑滤波对预测的人数进行后处理,提高了人群计数的准确性。

    加权卷积自编码长短期记忆网络人群异常检测方法

    公开(公告)号:CN108805015B

    公开(公告)日:2021-09-03

    申请号:CN201810385430.8

    申请日:2018-04-26

    申请人: 常州大学

    IPC分类号: G06K9/00 G06N3/04

    摘要: 本发明公开了一种加权卷积自编码长短期记忆网络(Weighted convolutional autoencoder‑long short‑term memory network,WCAE‑LSTM网络)进行异常检测的方法,致力于学习移动行人的生成模型进行异常检测及定位,以保证公共安全。本发明提出一种新颖的双通道框架,利用WCAE‑LSTM网络分别学习原始数据通道及对应的光流通道的生成模式并对数据进行重构,基于重构误差进行异常检测。此外,针对复杂背景问题,本发明提出采用分块鲁棒主成分分析分解将稀疏前景与低秩背景分离,根据得到的背景信息设计加权欧几里德损失函数,从而抑制背景噪声。本发明设计的WCAE‑LSTM网络不仅能从全局角度检测异常,还能从局部角度粗略地定位异常区域,并通过联合考虑全局‑局部异常分析和光流异常分析的结果,最终实现对异常事件鲁棒、准确地检测。

    一种对静止图像进行人群计数的方法

    公开(公告)号:CN107967451B

    公开(公告)日:2021-04-27

    申请号:CN201711179075.0

    申请日:2017-11-23

    申请人: 常州大学

    摘要: 本发明公开了一种对静止图像进行人群计数的方法,首先将逆高斯密度图与原始高斯密度图结合,组成组合密度图;然后对输入图像不重叠采样获得若干图像子块,并基于图像子块及其对应的真实组合密度图训练网络;以相同步幅对输入图像重叠采样,将MMCNN预测得到的每个图像子块的组合密度图叠加,重构完整人群图像的组合密度图,进而实现人群计数。此外,针对人群尺度差异问题,本发明通过一种分尺度损失函数衡量不同尺度网络学习到的特征。同时,本发明提出的网络以多任务的方式同时预测人群组合密度图、密度级别以及前景/背景分类,由此改善组合密度图的估计准确性,从而缓减人群密度不均问题。

    一种基于长短期记忆-加权神经网络对视频人群计数的方法

    公开(公告)号:CN108615027A

    公开(公告)日:2018-10-02

    申请号:CN201810446463.9

    申请日:2018-05-11

    申请人: 常州大学

    IPC分类号: G06K9/00 G06N3/04 G06N3/08

    摘要: 本发明公开了一种基于长短期记忆的加权卷积神经网络对视频中的人群进行计数的方法,首先根据不同场景估计透视图,进而生成人群的自适应密度图;然后对连续多帧图像降采样后输入神经网络,并基于图像及其对应的真实自适应密度图训练网络;利用训练好的网络估计输入图像的密度图,并根据密度图预测人数。针对场景中人群的尺度差异,本发明通过一种分尺度损失函数衡量网络学习到的不同尺度特征。针对人群分布不均匀问题,本发明通过一种加权损失函数权衡不同区域的贡献。同时,本发明通过长短期记忆获取相邻帧之间的关联信息,并通过平滑滤波对预测的人数进行后处理,提高了人群计数的准确性。

    面向面部表情识别的双通道卷积神经网络

    公开(公告)号:CN108491835A

    公开(公告)日:2018-09-04

    申请号:CN201810599295.7

    申请日:2018-06-12

    申请人: 常州大学

    IPC分类号: G06K9/00 G06N3/04

    摘要: 本发明公开了一种双通道卷积神经网络对人脸面部表情识别的方法,首先针对不同的输入图像进行预处理包括人脸检测、旋转校正、降采样以及数据样本扩充(若输入RGB图像,则将其灰度化以降低计算复杂度),从而提高人脸检测精度。其次对于样本扩充后的灰度图像,计算对应的LBP图像,从而构成双通道样本集,用于后续的模型训练与测试。然后利用双通道特征提取网络(Binary Channel-Feature Extraction Network,BC-FEN)进行人脸图像全局及局部特征的有效提取。最后利用加权融合分类网络(Weighted Merge Classify Network,WMCN)完成人脸图像的特征融合及表情分类,提高了人脸表情识别精度。