一种面向塑料基材的聚丙烯酸酯乳液及其制备方法

    公开(公告)号:CN110003482B

    公开(公告)日:2021-04-30

    申请号:CN201910336421.4

    申请日:2019-04-24

    Applicant: 常州大学

    Abstract: 本发明涉及一种面向塑料基材的聚丙烯酸酯乳液及其制备方法,属于涂层防护领域。本发明将水溶性高分子硅烷偶联剂、带双键氯硅烷和乳化剂依次加入到去离子水中,搅拌均匀,然后加入丙烯酸酯类单体混合物,滴加引发剂溶液进行引发聚合反应,反应后得到水性有机硅改性聚丙烯酸酯复合乳液,再向水性有机硅改性聚丙烯酸酯复合乳液中加入环氧树脂,加热反应后得有机硅/环氧树脂协同改性丙烯酸酯复合乳液。本发明通过共聚反应,使得聚丙烯酸酯、有机硅和环氧树脂三者之间以化学键的形式联结在一起,能有效改善聚丙烯酸酯涂层的耐水性、耐热性、耐有机溶剂性能和力学性能。

    一种导电材料的表面改性方法及其在聚丙烯酸酯涂料中的应用

    公开(公告)号:CN111748219A

    公开(公告)日:2020-10-09

    申请号:CN202010713709.1

    申请日:2020-07-22

    Applicant: 常州大学

    Abstract: 本发明涉及一种无机复合粉体的有机表面改性方法,特别是一种导电材料的表面改性方法及其在聚丙烯酸酯涂料中的应用,将本发明首先采用氯硅烷改性无机导电粉体,然后采用气相法改性,即通入氨气使无机导电粉体氨基化,再采用有机酸-氨基三亚甲基膦酸进一步改性氨基化无机导电粉体,氨基三亚甲基膦酸可与无机导电粉体表面的氨基基团发生反应,制得一种有机膦酸改性无机导电粉体材料。将该改性无机导电材料加入到聚丙烯酸酯涂料中,该改性导电粉体表面的酸性基团可以与聚丙烯酸酯成膜树脂分子链以化学键结合,提高聚丙烯酸酯分子链间交联度,从整体上提高了涂料的分散稳定性及其涂层的导电、力学性能。

    一种面向塑料基材的聚丙烯酸酯乳液及其制备方法

    公开(公告)号:CN110003482A

    公开(公告)日:2019-07-12

    申请号:CN201910336421.4

    申请日:2019-04-24

    Applicant: 常州大学

    Abstract: 本发明涉及一种面向塑料基材的聚丙烯酸酯乳液及其制备方法,属于涂层防护领域。本发明将水溶性高分子硅烷偶联剂、带双键氯硅烷和乳化剂依次加入到去离子水中,搅拌均匀,然后加入丙烯酸酯类单体混合物,滴加引发剂溶液进行引发聚合反应,反应后得到水性有机硅改性聚丙烯酸酯复合乳液,再向水性有机硅改性聚丙烯酸酯复合乳液中加入环氧树脂,加热反应后得有机硅/环氧树脂协同改性丙烯酸酯复合乳液。本发明通过共聚反应,使得聚丙烯酸酯、有机硅和环氧树脂三者之间以化学键的形式联结在一起,能有效改善聚丙烯酸酯涂层的耐水性、耐热性、耐有机溶剂性能和力学性能。

    一种导电材料的表面改性方法及其在聚丙烯酸酯涂料中的应用

    公开(公告)号:CN111748219B

    公开(公告)日:2021-03-02

    申请号:CN202010713709.1

    申请日:2020-07-22

    Applicant: 常州大学

    Abstract: 本发明涉及一种无机复合粉体的有机表面改性方法,特别是一种导电材料的表面改性方法及其在聚丙烯酸酯涂料中的应用,将本发明首先采用氯硅烷改性无机导电粉体,然后采用气相法改性,即通入氨气使无机导电粉体氨基化,再采用有机酸‑氨基三亚甲基膦酸进一步改性氨基化无机导电粉体,氨基三亚甲基膦酸可与无机导电粉体表面的氨基基团发生反应,制得一种有机膦酸改性无机导电粉体材料。将该改性无机导电材料加入到聚丙烯酸酯涂料中,该改性导电粉体表面的酸性基团可以与聚丙烯酸酯成膜树脂分子链以化学键结合,提高聚丙烯酸酯分子链间交联度,从整体上提高了涂料的分散稳定性及其涂层的导电、力学性能。

    一种TiO2量子点/氮化碳/凹凸棒石复合材料的制备方法及其在光阴极防腐中的应用

    公开(公告)号:CN108930041A

    公开(公告)日:2018-12-04

    申请号:CN201810871400.8

    申请日:2018-08-02

    Abstract: 本发明公开了一种TiO2量子点/氮化碳/凹凸棒石复合材料的制备方法及其在光阴极防腐中的应用,属于纳米防腐材料制备领域。本发明先将环己烷,油酸,钛盐溶液和油胺进行水热反应得TiO2量子点溶胶,再将富氮前驱体和凹凸棒石水热反应制备得凹凸棒石/氮化碳载体材料,将凹凸棒石/氮化碳载体材料和无水乙醇混合后快速加入TiO2量子点溶胶,离心分离,得到TiO2量子点/氮化碳/凹凸棒石复合材料。TiO2量子点与凹凸棒石/氮化碳二元载体之间形成异质结,可以加速光激发电荷载体的分离,提高材料对可见光的响应,提高可见光的利用率。极大地抑制了光生电子和空穴的复合,从而使不锈钢得到有效的保护。

Patent Agency Ranking