-
公开(公告)号:CN119646885B
公开(公告)日:2025-05-06
申请号:CN202510173637.9
申请日:2025-02-18
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06F21/62 , G06N3/098 , G06N3/0985
Abstract: 本发明属于联邦学习的技术领域,更具体地,涉及一种基于模型分层优化的保隐私个性化联邦学习方法。所述方法包括每个客户端获取服务器端的全局模型,使用自端的训练数据集更新本地模型,然后对本地模型进行分层优化,确定每一个客户端待上传的部分模型参数;对每个客户端待上传的部分模型参数进行裁剪,并引入差分隐私噪声,然后发送至服务器端;服务器端按照每个客户端数据量的大小为各个客户端分配权重,然后将各个客户端上传的模型参数进行聚合得到新的全局模型并发送至各个客户端;重复S1~S3至达到设置的训练轮次或收敛。本发明解决了在保障用户隐私的同时提高联邦学习中异构性带来的模型性能影响和通信效率的问题。
-
公开(公告)号:CN119646885A
公开(公告)日:2025-03-18
申请号:CN202510173637.9
申请日:2025-02-18
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06F21/62 , G06N3/098 , G06N3/0985
Abstract: 本发明属于联邦学习的技术领域,更具体地,涉及一种基于模型分层优化的保隐私个性化联邦学习方法。所述方法包括每个客户端获取服务器端的全局模型,使用自端的训练数据集更新本地模型,然后对本地模型进行分层优化,确定每一个客户端待上传的部分模型参数;对每个客户端待上传的部分模型参数进行裁剪,并引入差分隐私噪声,然后发送至服务器端;服务器端按照每个客户端数据量的大小为各个客户端分配权重,然后将各个客户端上传的模型参数进行聚合得到新的全局模型并发送至各个客户端;重复S1~S3至达到设置的训练轮次或收敛。本发明解决了在保障用户隐私的同时提高联邦学习中异构性带来的模型性能影响和通信效率的问题。
-
公开(公告)号:CN118314114A
公开(公告)日:2024-07-09
申请号:CN202410514388.0
申请日:2024-04-26
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 山东山科智控科技创新有限公司
IPC: G06T7/00 , G06V10/25 , G06V10/42 , G06V10/44 , G06V10/764 , G06V10/766 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/08
Abstract: 本发明提出钢材表面缺陷检测方法及系统,涉及缺陷检测技术领域。包括获取钢材表面图像;将钢材表面图像输入至CSTRNet模型串联的CTR模块中,在每个CTR模块中,利用并行的稀疏自注意力模块和卷积模块分别提取钢材表面图像的全局特征和局部特征;将各中间层CTR模块提取的特征依次输入至串联的双层GDC模块中,并利用双层GDC模块将CTR模块提取的浅层特征和深层特征进行双向融合,得到钢材表面缺陷的预测框位置、缺陷置信度和缺陷分类类别。本发明在模型中加入稀疏自注意力SA模型结构、卷积和Transformer相互协同的CTR模型结构以及GDC瓶颈卷积结构,提升了缺陷检测速度和检测精度。
-
公开(公告)号:CN113238553A
公开(公告)日:2021-08-10
申请号:CN202110489111.3
申请日:2021-04-30
Applicant: 齐鲁工业大学 , 山东省计算中心(国家超级计算济南中心)
IPC: G05D1/02
Abstract: 一种基于四轮全向底盘的辅助定位系统,系统包括多路灰度传感器和定位控制器;四个所述多路灰度传感器安装在机器人底盘的四个水平方向,相邻多路灰度传感器之间角度差为90°:采用AD采样的方式识别地面线条轨迹,形成模拟电压信号或者开关信号,所述多路灰度传感器将采集到的模拟电压信号或开关信号上传至所述定位控制器,所述定位控制器内加载有对上述模拟电压信号或开关信号进行处理的算法,经所述处理算法处理后得到机器人底盘相对于地面线条的坐标数据偏差。
-
公开(公告)号:CN120068994A
公开(公告)日:2025-05-30
申请号:CN202510512002.7
申请日:2025-04-23
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06N3/092 , G06N3/098 , G06N3/048 , G06N3/0464 , G06N3/0499
Abstract: 本发明属于联邦学习领域,具体涉及一种基于双层强化学习的联邦学习设备调度优化方法及装置,其方法包括:获取设备的当前状态特征;将设备分为个组,并通过上层强化学习为每组设备分配参与率;通过下层强化学习选择每组内参与联邦学习的设备;构建设备调度目标函数,并初始化全局模型参数,基于下层强化学习所选择的设备进行联邦学习训练,训练过程中,通过调整每组设备的参与率和优化目标的评分权重最大化设备调度目标函数,以确定设备最优调度策略。本发明利用双层强化学习策略优化联邦学习设备调度,旨在提升全局模型性能、降低设备能耗、并提高设备参与公平性。
-
公开(公告)号:CN118861540A
公开(公告)日:2024-10-29
申请号:CN202410848806.X
申请日:2024-06-27
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院) , 山东山科智控数字化科技有限公司
IPC: G06F18/15 , G06N3/0464 , G06F18/211 , G06F18/213 , G06N3/084 , G06N3/0985
Abstract: 本发明属于数据处理技术领域,更具体地,涉及一种基于卷积神经网络的机械设备监测的缺失数据恢复方法、装置及计算机可读存储介质。包括获取机械监测数据以及缺失数据范围,并进行分段处理;对分段完成的每段待恢复数据进行数据预处理后采用谐波小波变换得到基矩阵;使用数据恢复模型对每段数据的基矩阵进行数据恢复得到恢复后的每段数据;对得到恢复后的每段数据进行分段处理的逆过程,将所有的恢复后的每段数据拼装到一起得到完整的恢复数据。本发明解决了现有技术中计算量大且对于连续型大范围缺失的补全效果不佳,且无法解决张量的一个或几个超平面缺失的问题。
-
公开(公告)号:CN113804470B
公开(公告)日:2023-12-01
申请号:CN202110945033.3
申请日:2021-08-17
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC: G01M99/00 , G06F18/2321
Abstract: 一种穴盘育苗流水线的故障检测反馈方法,包括:五级流水线故障检测反馈方法。本发明基于智能补种机构,重点利用穴盘图像的识别结果,对流水线的组成部分进行故障诊断。提出基于五级流水线思想的故障检测反馈方法和基于Grubbs算法的故障检测方法,分别从播种密度和播种率两个方面进行故障检测,能够有效发现流水线补种环节前的故障并及时反馈,能够改善流水线运行环境,提高播种精度和育苗效率。本发明可应用于其他使用穴盘的流水线中,适应性强。
-
公开(公告)号:CN115661094A
公开(公告)日:2023-01-31
申请号:CN202211358411.9
申请日:2022-11-01
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
Abstract: 本发明涉及工业缺陷检测技术领域,公开了基于改进YOLOX模型的工业瑕疵检测方法,包括通过工业深度相机对流水线的工业产品进行拍照,所拍摄的高分辨率工业图片经过标准尺寸切割后预处理为标准图片,再对每一张标准图片的每个像素进行归一化后作为输入信息传入基于改进YOLOX模型的工业瑕疵检测网络,最终获得图片的检测框坐标、置信度和类别;网络针对获取到的图片信息进行后处理,将检测框坐标、置信度和类别信息绘制到原始图片,将绘制后的处理图片进行输出。本发明在特征提取网络内加入注意力机制和自适应特征融合,使网络能更好地聚焦目标物体。最终在网络预测时不过多损失速度的情况下提高了预测的准确率,达到速度与准确率的平衡。
-
公开(公告)号:CN114996566B
公开(公告)日:2025-04-25
申请号:CN202210439549.5
申请日:2022-04-25
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F16/9535 , G06F16/906 , G06F40/126 , G06F40/284 , G06N3/0464 , G06N3/048 , G06N3/045 , G06N3/08
Abstract: 本发明涉及计算机推荐技术领域,公开了一种面向工业互联网平台的智能推荐系统及方法,所述的系统包括后台管理模块、用户端、推荐管理模块、前端展示模块;所述的方法包括以下流程:(1)对后台管理模块中平台的信息进行数据预处理;(2)对用户信息进行数据预处理;(3)关于平台文本信息的文本‑主题特征提取;(4)关于企业用户信息的用户‑兴趣特征提取;(5)把流程(3)、(4)所得到的向量yCNN、yAFM通过低阶与高阶特征交互的融合,然后经过sigmoid非线性转换,得到预测喜爱程度的概率输出,然后根据喜爱程度的概率大小将被推荐信息进行排序得到待推荐topk;(6)把待推荐topk传输到到前端展示模块,形成推荐列表推荐给对应的企业用户。
-
公开(公告)号:CN114046179B
公开(公告)日:2023-09-22
申请号:CN202111084591.1
申请日:2021-09-15
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
Abstract: 一种基于CO监测数据智能识别和预测井下安全事故的方法。本发明是基于神经网络模型对煤矿中一氧化碳检测数据进行有效识别,将所述一氧化碳检测数据输入至训练好的神经网络模型中即可实时获得检测数据背后的事故原因,由此,现有技术人员无需再通过人工统计或者数据录入才能实现对一氧化碳数据超标背后的事故原因做客观统计,大大提高了智能识别的效率,即便存在误差,工作人员也只需部分修改数据即可。
-
-
-
-
-
-
-
-
-