-
公开(公告)号:CN119669716A
公开(公告)日:2025-03-21
申请号:CN202510168242.X
申请日:2025-02-17
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/211 , G06F18/10 , G06F18/214 , G06F18/243 , G06N3/006
Abstract: 本发明涉及一种基于改进鸽群优化算法水质异常检测特征选择方法及系统,属于机器学习领域,包括:对净水厂数据进行预处理;执行改进鸽群算法,对鸽群进行评估;将适应度最低的鸽子的位置及速度赋予给全局最优鸽子;更新鸽子速度,并利用Sigmoid函数转换鸽子速度,根据Sigmoid函数的输出值更新鸽子位置;当达到迭代停止条件时,返回全局最优鸽子;否则,将鸽群进行变异,通过利他主义更新位置和速度;将变异完成的鸽子根据适应度值排名,计算理想目的地,更新鸽群位置;本发明通过设置自适应迭代地图和罗盘因子,同时引入利他主义机制,使鸽子个体之间能够进行信息交互和协作,促进群体的共同进化,进一步优化其搜索能力。
-
公开(公告)号:CN117496434A
公开(公告)日:2024-02-02
申请号:CN202311478776.X
申请日:2023-11-08
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06V20/52 , G06V40/20 , G06V10/44 , G06V10/25 , G06V10/80 , G06V10/26 , G06N3/045 , G06N3/0464 , G06N3/048 , G06N3/082
Abstract: 本发明涉及一种基于改进YOLOv5算法的学生行为检测方法及系统,包括:获取待检测的教室的图片并进行预处理;将预处理后的图片输入训练好的改进的YOLOv5网络模型中进行学生行为检测,得到学生行为检测结果;改进的YOLOv5包括骨干网络bockbone、neck层和Head层,骨干网络bockbone包括Conv模块、C3模块、SACA模块以及BasciRFB模块。本发明将SPP模块替换为BasicRFB模块,同时搭建SACA模块,先经过SACA模块获取通道相关性权重特征以及空间信息权重特征,可以更好的获取有效特征信息,再经过BasicRFB模块进行特征提取,可以对目标模型特征达到更好的识别效果。
-
公开(公告)号:CN117112648A
公开(公告)日:2023-11-24
申请号:CN202311070405.8
申请日:2023-08-24
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F16/2458 , G06F16/215 , G06F18/214 , G06F18/24 , G06F18/23213 , G06Q50/20
Abstract: 本发明涉及一种基于智慧教育数据的高校学生学习画像生成系统及方法,属于数据挖掘领域,包括数据抽取模块、数据处理模块、标签模块、数据库模块、画像生成模块;通过针对学生在教育大数据应用中的现实需要,聚焦于学生学习行为,针对多任务学习场景,分析学生学习特征,构造客观的学生画像标签体系,设计学生画像标签体系技术架构,对学生群体进行深度刻画,构建学生学习画像,以此形成的学生画像来反映学生表现特征,提供个性化教学,降低大量数据给师生带来的认知负荷,为学生教育管理者提供相应的决策支持。
-
公开(公告)号:CN116993697A
公开(公告)日:2023-11-03
申请号:CN202310970953.X
申请日:2023-08-03
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明的基于图像处理的病理切片褶皱识别方法,首先获取数字病理图像,然后将其转换至HSV空间,获得饱和度图像;然后计算饱和度图像的直方图并获取二值化的阈值;利用二值化的阈值将饱和度图像进行二值化处理,二值化图像中的白色区域即为褶皱的ROI区域;然后形成二值化图像的边界框;最后,提取出二值化图像中的褶皱区域。本发明的病理切片褶皱识别方法,可实现病理切片图像中褶皱区域的快速、高效的自动识别,适于对数量巨大的切片数据的处理,与现有人工审核筛选相比较,具有效率高、识别准确和不受人员因数干扰的优点,适用于对病理图像的切片优良率的智能化判断。
-
公开(公告)号:CN116594771A
公开(公告)日:2023-08-15
申请号:CN202310543327.2
申请日:2023-05-15
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及一种面向算力网络的异构数据资源管理方法,属于算力网络领域。包括:系统初始化;建立算网异构数据资源管理架构;创建算网异构数据资源管理架构的资源表、编写算网异构数据资源管理架构的数据中心管理引擎和数据实体管理引擎;在算网中心节点构建虚拟目录,形成算网下异构资源的统一目录;接入数据中心资源;对算网异构数据资源进行管理。本发明建立了算网统一数据资源虚拟目录,形成了算网数据资源的统一视图,并创建了异构数据资源管理引擎,方便数据实体的管理和使用。在路由选路时,设计了MinCost代价函数计算数据流转的最小代价,选择最小代价的最优路径作为通信路径。
-
公开(公告)号:CN115037749B
公开(公告)日:2023-07-28
申请号:CN202210644605.9
申请日:2022-06-08
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC: H04L67/10 , H04L67/1074 , H04L67/133 , H04L67/63
Abstract: 本发明涉及一种大规模微服务智能多资源协同调度方法及系统,包括:采集微服务资源使用信息与微服务运行时信息并进行数据预处理;对资源协同调度进行决策的性能感知的多层联动;对微服务进行资源调度的资源分配。通过自动的信息采集可以实时地感知微服务的资源使用和延迟性能等情况;在此基础上,利用多智能体深度强化学习方法可以捕获各个微服务之间的依赖关系,并根据工作负载的动态变化协同地对每个微服务所使用的多种资源进行弹性细粒度的调整。本发明可以在尽可能保障大规模微服务应用的尾延迟SLO的同时,降低微服务每个资源维度的资源冗余,进而提高整体资源利用率。
-
公开(公告)号:CN111880898B
公开(公告)日:2022-04-05
申请号:CN202010731894.7
申请日:2020-07-27
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F9/455
Abstract: 本发明涉及一种基于微服务架构的服务调度方法及其实现系统,包括:(1)第一级调度:根据若干台宿主机的资源情况以及待调度的业务应用的基本信息,将不同副本之间有调用关系的子服务调度到相同的宿主机中;(2)第二级调度:在业务应用运行过程中,统计各个子服务之间的调用关系,并根据调用关系系数周期性检查并迁移符合条件的子服务,将调用频繁的子服务迁移到相同的宿主机中。本发明通过两级调度之后,保证业务应用服务的子服务调度到适合的宿主机中,最终达到在满足业务应用服务高可用的前提下,尽量将有调用关系的子服务调度到同一台宿主机中,减少跨服务器和跨区域调用带来的时间延迟,提高子服务之间调用的性能。
-
公开(公告)号:CN114741161B
公开(公告)日:2025-05-02
申请号:CN202210487700.2
申请日:2022-05-06
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F9/455
Abstract: 本发明涉及一种基于混合集群的HPC作业集群感知方法,包括:A、获取传统虚拟化云集群环境和容器云集群环境作业运行日志记录信息;B、初构建、处理传统虚拟化云集群环境和容器云集群环境下的作业运行数据集;C、训练得到基于传统虚拟化云集群环境和容器云集群环境两种环境下的基于RFR随机森林回归算法的预测模型;D、根据用户提交的作业需求信息,预测模型给予运行时间、CPU使用率、内存使用率的预测;E、将作业运行结果信息对提交的作业进行集群感知模型的处理,最终形成HPC作业集群节点感知方法。本发明建立两种环境下的预测模型,并以预测结果为依据进行集群节点感知,达到了根据作业需求自动感知最佳集群节点的效果。
-
公开(公告)号:CN118779197A
公开(公告)日:2024-10-15
申请号:CN202411237023.4
申请日:2024-09-05
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F11/34 , G06F11/30 , G06F9/50 , G06N3/006 , G06F18/23213 , G06F18/2415
Abstract: 本发明涉及一种基于BWO和聚类算法的作业资源消耗模式分析方法,属于大数据计算技术领域;包括:(1)作业运行与任务调度;(2)工作节点资源指标监控;(3)数据预处理和生成数据集;(4)运行基于白鲸优化算法和K‑prototypes算法的BWO/K‑prototypes算法;(5)BWO/K‑prototypes算法最优解应用;(6)聚类结果分析;(7)Flink作业的资源消耗模式分析结果获取与保存。本发明不仅可以提升Flink集群的执行效率,避免异常抛出;还可以减少资源占用,避免不必要的资源浪费。
-
公开(公告)号:CN117114932A
公开(公告)日:2023-11-24
申请号:CN202311009670.5
申请日:2023-08-11
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06Q50/20 , G06Q10/0639 , G06V20/40 , G06V20/52
Abstract: 本发明涉及一种基于算力网络的教学行为分析系统及方法,包括:算网云平台层、通信网络层、边缘层以及供用户交互的Web端。算网云平台层用于:数据标注;目标检测模型的训练;存储数据集、镜像、目标检测模型文件以及数据在各个存储节点流转。通信网络层用于:算网云平台层与边缘层进行数据、信息交互;边缘层用于:对实时视频流进行推理;供用户交互的Web端用于:为用户提供上传数据、选择模型训练方式、查看模型训练结果以及教学行为分析报告的服务。本发明对一门课程进行长期评估,在学期末给出一份综合的课程专注度分析报告,对教师调整教学大纲有很大的帮助,同时也让学校对教师的教学评估更加客观。
-
-
-
-
-
-
-
-
-