一种金属硼化物涂层的制备方法

    公开(公告)号:CN112359395B

    公开(公告)日:2021-09-24

    申请号:CN202011106713.8

    申请日:2020-10-15

    Abstract: 本发明公开一种金属硼化物涂层的制备方法,包括步骤:将固体无机盐混合,球磨至微米级,在球磨好的混合盐中加入金属硼化物纳米颗粒,再加入丙酮液体并超声分散后,在真空干燥箱内抽真空加热后即得含金属硼化物纳米颗粒的固态混合盐;将固体无机盐装入坩埚中,在惰性气体保护的电阻炉中加热到熔融,将固态混合盐加入熔融无机盐中,形成纳米无机熔盐,稳定后,将石墨阳极和待沉积阴极插入坩埚中,电泳沉积后,即可得到金属硼化物涂层;本发明利用无机熔盐的高温环境,实现无机熔盐中金属硼化物纳米颗粒的电泳沉积以及烧结两道工序的同时进行,即“边电泳沉积边烧结”,从而得到致密且结合力强的金属硼化物涂层。

    一种含纳米颗粒电解金属锰锭的生产方法

    公开(公告)号:CN109371421A

    公开(公告)日:2019-02-22

    申请号:CN201811484480.8

    申请日:2018-12-04

    Abstract: 本发明公开了一种含纳米颗粒电解金属锰锭的生产方法,涉及电化学冶金领域。本发明的含纳米颗粒电解金属锰锭的生产方法,包括以下步骤:步骤A:纳米颗粒的预分散处理;步骤B:含纳米颗粒电解金属锰片的制备;步骤C:含纳米颗粒电解金属锰锭的制备。本发明的目的在于克服现有外部合金法生产含纳米颗粒钢生产成本较高的不足,提供了一种含纳米颗粒电解金属锰锭的生产方法,实现了含纳米颗粒含锰合金的低成本生产。

    一种含纳米颗粒的铝电解质中复合电沉积制备铝基复合材料的方法

    公开(公告)号:CN114934297B

    公开(公告)日:2023-10-31

    申请号:CN202210566851.7

    申请日:2022-05-23

    Abstract: 本发明涉及铝基复合材料制备技术领域,具体涉及一种含纳米颗粒的铝电解质中复合电沉积制备铝基复合材料的方法,将Na3AlF6、AlF3、Al2O3与纳米颗粒充分混匀后得到含纳米颗粒的固态无机盐,将制备的含纳米颗粒的固态无机盐加入到铝电解槽的熔融铝电解质中,形成含纳米颗粒的熔融铝电解质,施加4~5V槽电压,纳米颗粒在阴极炭块上的电泳沉积与含铝的离子在阴极炭块上的电化学沉积同时进行,完成复合电沉积过程,在阴极炭块上得到含纳米颗粒的液态铝,出炉浇铸即可得含纳米颗粒质量百分比为0.5%~12%的铝基复合材料,该方法直接在铝电解槽的铝电解质中复合电沉积制备含纳米颗粒的铝基复合材料,得到的纳米颗粒均匀分布铝基复合材料,还降低了铝基复合材料的生成成本。

    一种Ti-Mo-B系三元硼化物涂层及其制备方法

    公开(公告)号:CN114277421A

    公开(公告)日:2022-04-05

    申请号:CN202111565902.6

    申请日:2021-12-20

    Abstract: 本发明涉及表面涂层制备技术领域,具体涉及一种Ti‑Mo‑B系三元硼化物涂层及其制备方法,将NaCl和KCl无机盐混合,球磨至微米级后在其中加入TiB2纳米颗粒,一起放入丙酮液体中超声分散后,真空加热,即得含TiB2纳米颗粒的固态混合盐;将NaCl/KCl/AlCl3或NaCl/KCl/AlF3固体无机盐在惰性气体下加热到熔融,将含TiB2纳米颗粒的固态混合盐与MoO3粉分别加入熔融无机盐中,形成含钼离子以及纳米TiB2的无机熔盐,稳定后将石墨阳极和待沉积阴极插入坩埚中,通电后同时进行钼离子的电化学沉积与纳米TiB2电泳沉积,阴极沉积的钼原子与纳米TiB2反应后得到组织致密且不含脆性第三相的Ti‑Mo‑B系三元硼化物涂层,整个工艺操作温度相对现有工艺低、对基体材料自身影响小、工艺过程简单且能适用于不同形状的基体材料。

    一种黄磷冶炼副产品磷铁的综合利用方法

    公开(公告)号:CN108950143A

    公开(公告)日:2018-12-07

    申请号:CN201810745315.7

    申请日:2018-07-09

    Abstract: 本发明涉及化工废弃物资源综合利用领域,具体涉及一种黄磷冶炼副产品磷铁的综合利用方法;该方法以硅铁等含硅合金材料为回收介质,将含硅合金、磷铁以及保护渣加入到感应加热电炉中;当三种物料完全融化并恒温后,将真空室直接插入到感应加热电炉的熔融合金中,随后开启真空装置,吹入惰性气体以实现感应加热电炉中的熔融合金在真空室内的循环流动;随着熔融合金在真空室内循环流动,合金中的磷元素在真空作用下进入气相并在冷凝器中冷凝成为黄磷产品,感应加热电炉内的剩余合金则成为低磷含量(

    一种Ti-Mo-B系三元硼化物涂层及其制备方法

    公开(公告)号:CN114277421B

    公开(公告)日:2023-10-03

    申请号:CN202111565902.6

    申请日:2021-12-20

    Abstract: 本发明涉及表面涂层制备技术领域,具体涉及一种Ti‑Mo‑B系三元硼化物涂层及其制备方法,将NaCl和KCl无机盐混合,球磨至微米级后在其中加入TiB2纳米颗粒,一起放入丙酮液体中超声分散后,真空加热,即得含TiB2纳米颗粒的固态混合盐;将NaCl/KCl/AlCl3或NaCl/KCl/AlF3固体无机盐在惰性气体下加热到熔融,将含TiB2纳米颗粒的固态混合盐与MoO3粉分别加入熔融无机盐中,形成含钼离子以及纳米TiB2的无机熔盐,稳定后将石墨阳极和待沉积阴极插入坩埚中,通电后同时进行钼离子的电化学沉积与纳米TiB2电泳沉积,阴极沉积的钼原子与纳米TiB2反应后得到组织致密且不含脆性第三相的Ti‑Mo‑B系三元硼化物涂层,整个工艺操作温度相对现有工艺低、对基体材料自身影响小、工艺过程简单且能适用于不同形状的基体材料。

    一种采用纳米熔盐制备含纳米颗粒硅铝铁合金的方法

    公开(公告)号:CN109576520B

    公开(公告)日:2020-04-17

    申请号:CN201811455194.9

    申请日:2018-11-30

    Abstract: 本发明提供了一种采用纳米熔盐制备含纳米颗粒硅铝铁合金的方法,属于特种铁合金生产领域;该方法实施的第一步是制备含纳米颗粒混合盐,即将纳米颗粒与盐机械混合后加入丙酮液体,经超声波震荡处理后在真空干燥箱内抽真空加热,丙酮全部挥发即得到均匀混合的含纳米颗粒混合盐;该方法实施的第二步是在感应炉内熔炼含纳米颗粒硅铝铁合金;即在中频感应炉内依次加入废钢、75号硅铁、铝锭与含纳米颗粒混合盐和石灰,全部熔化后保温并停止加热静置后浇铸成型即可得含纳米颗粒硅铝铁合金;该方法采用在硅铝铁合金生产过程中加入纳米颗粒,得到纳米颗粒均匀分布的硅铝铁合金,为低成本制备含纳米颗粒钢提供了中间合金。

    一种熔盐原位合成并电泳沉积制备过渡金属硼化物涂层的方法

    公开(公告)号:CN114045546B

    公开(公告)日:2023-09-12

    申请号:CN202111388670.1

    申请日:2021-11-22

    Abstract: 本发明涉及表面涂层制备技术领域,具体涉及一种熔盐原位合成并电泳沉积制备过渡金属硼化物涂层的方法,将过渡金属氧化物粉、硼粉、固体无机盐、纳米颗粒分散剂混匀并研磨后,在惰性气氛保护中加热到800~1100℃,保温5~8h,形成纳米过渡金属硼化物稳定分散的纳米熔盐;再将石墨阳极和待沉积阴极插入装有纳米过渡金属硼化物熔盐的石墨坩埚中,通电进行电泳沉积,电泳沉积电场强度为0.2~0.6V/cm;电泳沉积后得到过渡金属硼化物涂层;本发明实现了在一个工序内完成“合成与电泳”两个任务,降低了纳米过渡金属硼化物的原料成本,简化了熔盐电泳沉积工艺,为过渡金属硼化物涂层的制备提供一种低成本方法。

    一种含纳米颗粒的铝电解质中复合电沉积制备铝基复合材料的方法

    公开(公告)号:CN114934297A

    公开(公告)日:2022-08-23

    申请号:CN202210566851.7

    申请日:2022-05-23

    Abstract: 本发明涉及铝基复合材料制备技术领域,具体涉及一种含纳米颗粒的铝电解质中复合电沉积制备铝基复合材料的方法,将Na3AlF6、AlF3、Al2O3与纳米颗粒充分混匀后得到含纳米颗粒的固态无机盐,将制备的含纳米颗粒的固态无机盐加入到铝电解槽的熔融铝电解质中,形成含纳米颗粒的熔融铝电解质,施加4~5V槽电压,纳米颗粒在阴极炭块上的电泳沉积与含铝的离子在阴极炭块上的电化学沉积同时进行,完成复合电沉积过程,在阴极炭块上得到含纳米颗粒的液态铝,出炉浇铸即可得含纳米颗粒质量百分比为0.5%~12%的铝基复合材料,该方法直接在铝电解槽的铝电解质中复合电沉积制备含纳米颗粒的铝基复合材料,得到的纳米颗粒均匀分布铝基复合材料,还降低了铝基复合材料的生成成本。

Patent Agency Ranking