基于深度模态隐式学习的可见光图像显著目标检测方法

    公开(公告)号:CN114444596A

    公开(公告)日:2022-05-06

    申请号:CN202210095472.4

    申请日:2022-01-26

    Applicant: 安徽大学

    Abstract: 本发明公开一种基于深度模态隐式学习的可见光图像显著目标检测方法,属于计算机视觉技术领域,方法包括获取可见光图像,将可见光图像作为目标检测网络输入,目标检测网络包括显著图分支网络、深度图分支网络、特征增强网络和多模态融合网络;利用显著图分支网络和深度分支网络分别提取可见光图像的高层特征和深度特征;利用特征增强网络对高层特征和深度特征进行增强,得到高层增强特征和深度增强特征;利用多模态融合网络对高层增强特征和深度增强特征进行自适应模态互补融合,生成显著图。本发明以单一可见光图像数据作为输入,使用一个轻量级网络生成深度信息,消除测试阶段对输入深度图的依赖,避免附加深度分支引入的大量计算开销。

Patent Agency Ranking