一种基于改进协同表示分类的齿轮箱故障诊断方法

    公开(公告)号:CN110631827B

    公开(公告)日:2021-08-10

    申请号:CN201910795937.5

    申请日:2019-08-27

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于改进协同表示分类的齿轮箱故障诊断方法,首先利用传统傅里叶变换将齿轮箱的原始振动信号进行频域变换,提取频域特征,并利用主成分分析降低所得到的特征矩阵的维度;基于降维后的相似特征矩阵,利用不同故障类别的特征矩阵进行训练得到不同的子字典,再将子字典进行合并形成过完备字典;根据所得到的过完备字典,通过协同表示分类来计算每个故障类别的残差,残差最小的故障类别就是查询样本所属的类别,以此来实现故障的分类。上述方法能在快速分类的同时,提高故障分类的准确率,进而提高了齿轮箱故障诊断的可靠性。

    一种基于改进协同表示分类的齿轮箱故障诊断方法

    公开(公告)号:CN110631827A

    公开(公告)日:2019-12-31

    申请号:CN201910795937.5

    申请日:2019-08-27

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于改进协同表示分类的齿轮箱故障诊断方法,首先利用传统傅里叶变换将齿轮箱的原始振动信号进行频域变换,提取频域特征,并利用主成分分析降低所得到的特征矩阵的维度;基于降维后的相似特征矩阵,利用不同故障类别的特征矩阵进行训练得到不同的子字典,再将子字典进行合并形成过完备字典;根据所得到的过完备字典,通过协同表示分类来计算每个故障类别的残差,残差最小的故障类别就是查询样本所属的类别,以此来实现故障的分类。上述方法能在快速分类的同时,提高故障分类的准确率,进而提高了齿轮箱故障诊断的可靠性。

Patent Agency Ranking