基于多模态融合的单幅近红外手掌图像识别方法

    公开(公告)号:CN108564031A

    公开(公告)日:2018-09-21

    申请号:CN201810324828.0

    申请日:2018-04-12

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于多模态融合的单幅近红外手掌图像识别方法。首先,采用分块模型去除图像中的掌静脉得到掌纹结构,通过自定义隶属度函数对掌纹结构进行模糊化,再进行反锐化掩模增强,突出掌纹结构信息;然后,使用边缘检测加权引导滤波对掌静脉结构进行增强,突出掌静脉结构;最后,将掌纹和掌静脉图像进行自适应融合。在近红外手掌图像识别中,使用香港理工大学提供的近红外掌纹图像数据库进行对比实验,实验结果显示,相比其他同类方法,本申请的方法具有更高的识别率,达到了99.81%。

    基于联合加权差分激励和双Gabor方向的掌纹交叉匹配识别方法

    公开(公告)号:CN108491802A

    公开(公告)日:2018-09-04

    申请号:CN201810251845.6

    申请日:2018-03-26

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于联合加权差分激励和双Gabor方向的掌纹交叉匹配识别方法。本申请根据掌纹图像纹线丰富的特点,首先,计算中心像素和邻域像素的灰度差分,提取图像的灰度变化特性,并通过各邻域的方向角对差分值进行加权。然后,利用Gabor滤波器提取图像中纹线的方向信息。最后,构建联合加权差分激励和双Gabor方向的掌纹特征。此外,为了能够更好地衡量特征间的相似度,进一步使用交叉匹配算法,提高系统的识别性能。在PolyU,PolyU M_B和CASIA掌纹库上进行实验,识别率均达到100%。实验结果表明,与其它基于局部描述子的掌纹识别方法相比,本申请所述方法具有更高的识别率和更低的等错误率。

Patent Agency Ranking