-
公开(公告)号:CN114091768A
公开(公告)日:2022-02-25
申请号:CN202111414339.2
申请日:2021-11-25
Applicant: 安徽大学
Abstract: 一种基于STL和带有注意力机制的LSTM的旅游需求预测方法,包括:从旅游客流量数据中获取初始的时间序列;使用STL分解模型对初始时间序列进行分解,得到3个分解序列;将3个分解序列分别输入到一个共享的注意力层,获得每个序列中不同特征的权重,然后将带有权重的特征作为LSTM的输入;对3个分解序列使用相同参数的LSTM模型进行训练,并分别对它们的测试集进行预测;3个预测结果进入全连接单元;将这3个预测结果相加得到游客达到量的最终预测结果并输出。本发明的优点在于:首先利用STL解决了旅游需求预测过程中由于数据量有限引起的高度复杂的模型中过拟合问题,并形成了一个相对简单的预测过程;其次,运用Attention‑LSTM有效地选择了特征变量和适当的时间步长。
-
公开(公告)号:CN114091768B
公开(公告)日:2024-11-22
申请号:CN202111414339.2
申请日:2021-11-25
Applicant: 安徽大学
IPC: G06Q10/0631 , G06Q50/14 , G06N3/0442 , G06N3/045 , G06N3/084
Abstract: 一种基于STL和带有注意力机制的LSTM的旅游需求预测方法,包括:从旅游客流量数据中获取初始的时间序列;使用STL分解模型对初始时间序列进行分解,得到3个分解序列;将3个分解序列分别输入到一个共享的注意力层,获得每个序列中不同特征的权重,然后将带有权重的特征作为LSTM的输入;对3个分解序列使用相同参数的LSTM模型进行训练,并分别对它们的测试集进行预测;3个预测结果进入全连接单元;将这3个预测结果相加得到游客达到量的最终预测结果并输出。本发明的优点在于:首先利用STL解决了旅游需求预测过程中由于数据量有限引起的高度复杂的模型中过拟合问题,并形成了一个相对简单的预测过程;其次,运用Attention‑LSTM有效地选择了特征变量和适当的时间步长。
-