基于特征强化引导卷积神经网络的行人再识别方法及装置

    公开(公告)号:CN109614907B

    公开(公告)日:2022-04-19

    申请号:CN201811469353.0

    申请日:2018-11-28

    Applicant: 安徽大学

    Inventor: 李腾 谢以翔 王妍

    Abstract: 基于特征强化引导卷积神经网络的行人再识别方法及装置,方法包括:1)收集行人图像数据并做好分类标签,并将分类后的行人图像数据分为训练集和测试集;2)构建特征强化引导的卷积神经网络;3)将步骤1)中的训练集特征强化引导的卷积神经网络,训练得到行人再识别的预训练模型;4)用步骤1)中的测试集测试步骤3)中训练得到的预训练模型,根据测试结果调整训练参数重新训练,得到最佳预训练模型;5)使用目标场景中的部分目标行人图像训练最佳预训练模型,得到目标模型,再使用目标模型对行人库中的图像进行检测,得到含有目标行人的目标图像。应用本发明实施例,可以解决现有技术中存在的误差较大的技术问题。

    基于特征强化引导卷积神经网络的行人再识别方法及装置

    公开(公告)号:CN109614907A

    公开(公告)日:2019-04-12

    申请号:CN201811469353.0

    申请日:2018-11-28

    Applicant: 安徽大学

    Inventor: 李腾 谢以翔 王妍

    Abstract: 基于特征强化引导卷积神经网络的行人再识别方法及装置,方法包括:1)收集行人图像数据并做好分类标签,并将分类后的行人图像数据分为训练集和测试集;2)构建特征强化引导的卷积神经网络;3)将步骤1)中的训练集特征强化引导的卷积神经网络,训练得到的行人再识别的预训练模型;4)用步骤1)中的测试集测试步骤3)中训练得到的预训练模型,根据测试结果调整训练参数重新训练,得到最佳预训练模型;5)使用目标场景中的部分目标行人图像训练最佳预训练模型,得到目标模型,再使用目标模型对行人库中的图像进行检测,得到含有目标行人的目标图像。应用本发明实施例,可以解决现有技术中存在的误差较大的技术问题。

Patent Agency Ranking