-
公开(公告)号:CN115588015A
公开(公告)日:2023-01-10
申请号:CN202211159164.X
申请日:2022-09-22
Applicant: 安徽大学
Abstract: 本发明特别涉及一种基于Improved_Unet网络的倒伏区域分割方法,包括如下步骤:利用无人机获取指定高度、指定生长期的待检测麦田图像;对待检测麦田图像进行几何校正和拼接处理得到一张待检测RGB大图;将待检测RGB大图输入至训练好的Improved_Unet网络中得到倒伏区域分割图,其中Improved_Unet网络为使用Involution算子代替Unet网络骨干位置的卷积操作得到。Improved_Unet网络结合了Segnet和Unet网络的优点,使用involution算子代替骨干部分的卷积操作,实现了空间特异性,对不同的像素采取不同的操作,确保了信息最大化提取,大幅提高了分割精度。
-
公开(公告)号:CN115588016A
公开(公告)日:2023-01-10
申请号:CN202211159179.6
申请日:2022-09-22
Applicant: 安徽大学
Abstract: 本发明特别涉及一种基于Lstm_PSPNet深度学习网络的小麦倒伏分割方法,包括如下步骤:利用无人机采集待检测麦田图像,并进行几何校正和拼接处理得到一张待检测RGB大图;将待检测RGB大图输入至训练好的Lstm_PSPNet网络中得到倒伏区域分割图;所述的Lstm_PSPNet网络包括特征图计算模块、改进后的空间金字塔池化模块以及分割预测模块。本发明通过引入具有记忆长短期信息的能力的ConvLSTM神经网络,插入卷积注意力模块CBAM以及Tversky损失函数对PSPNet模型进行改进,将不同生育期之间的时序关系进行逐网络传递,从而提高分割精度。
-