-
公开(公告)号:CN112434654A
公开(公告)日:2021-03-02
申请号:CN202011430914.3
申请日:2020-12-07
Applicant: 安徽大学
Abstract: 本发明公开了一种基于对称卷积神经网络的跨模态行人重识别方法,其步骤包括:1获取可见光和红外光两种不同模态下的行人照片,构建跨模态行人重识别数据集,构建检索库;2利用神经网络建立对称卷积神经网络跨模态行人重识别方法模型;3利用数据集训练基于对称卷积神经网络跨模态行人重识别方法模型;4利用建立好的模型实现预测,以达到跨模态行人重识别的目的。本发明能极大地缓解现有行人重识别方法在跨模态下检测不精确的问题,在模态差异较大的情况下仍然有较高的检测精度。
-
公开(公告)号:CN112434654B
公开(公告)日:2022-09-13
申请号:CN202011430914.3
申请日:2020-12-07
Applicant: 安徽大学
IPC: G06V20/52 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于对称卷积神经网络的跨模态行人重识别方法,其步骤包括:1获取可见光和红外光两种不同模态下的行人照片,构建跨模态行人重识别数据集,构建检索库;2利用神经网络建立对称卷积神经网络跨模态行人重识别方法模型;3利用数据集训练基于对称卷积神经网络跨模态行人重识别方法模型;4利用建立好的模型实现预测,以达到跨模态行人重识别的目的。本发明能极大地缓解现有行人重识别方法在跨模态下检测不精确的问题,在模态差异较大的情况下仍然有较高的检测精度。
-