基于改进YOLOv8模型的害虫检测识别方法

    公开(公告)号:CN117975278A

    公开(公告)日:2024-05-03

    申请号:CN202410232018.8

    申请日:2024-03-01

    Applicant: 安徽大学

    Abstract: 本发明涉及一种基于改进YOLOv8模型的害虫检测识别方法,包括:获取病虫害数据并进行预处理,得到病虫害数据集;对YOLOv8模型进行改进,在YOLOv8模型的Neck层的拼接模块后加入空间注意力模块,将YOLOv8模型的主干网络中的一个卷积层替换为SwimTransformer模块,将YOLOv8模型的损失函数替换为SIoU,得到害虫检测识别模型;采用训练集对害虫检测识别模型进行训练;获取待识别的害虫图像,将待识别的害虫图像输入训练后的害虫检测识别模型,得到检测识别结果。为了提高对害虫检测识别的精度,本发明对原始的YOLOv8模型做出了以下改进,增强了对细粒度特征的提取,极大的提高了对害虫的检测识别精度。

    一种大型虫情监测回收方法及装置

    公开(公告)号:CN117063903A

    公开(公告)日:2023-11-17

    申请号:CN202311223649.5

    申请日:2023-09-21

    Applicant: 安徽大学

    Abstract: 本发明涉及一种大型虫情监测回收方法,包括下列顺序的步骤:打开黑光引虫灯管和加热仓的上仓门,吸引虫子来到加热仓;关闭加热仓的上仓门和下仓门,执行加热杀虫工作,杀死虫子后,打开下仓门,加热烘干的虫子落到圆盘上摆放;位于圆盘正上方的相机对圆盘上的虫子进行拍照;拍摄的照片分别存储本地和上传云端进行识别,通过基于深度学习的图像识别模型,对图片内容进行依次识别;启动电刷对圆盘上的害虫进行清扫和回收。本发明还公开了一种大型虫情监测回收装置。本发明基于硬件、软件、电子、网络实现了自动化、智能化的虫情测报设备,为农业、林业等各个领域提供虫情的监测功能;实现软硬件的自动化,这使得虫情测报灯的工作更高效。

Patent Agency Ranking