-
公开(公告)号:CN117629635A
公开(公告)日:2024-03-01
申请号:CN202311623407.5
申请日:2023-11-30
Applicant: 安徽大学
IPC: G01M13/045 , G06T7/00 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/096
Abstract: 本发明公开了一种基于深度迁移学习的轴承变工况故障诊断方法,步骤包括:步骤1、获取轴承的源域、目标域;步骤2、得到源域、目标域的时频图;步骤3、利用源域时频图对CNN模型进行预训练得到预训练CNN模型,以及源域深度特征集;步骤4、将预训练CNN模型迁移得到迁移CNN模型;步骤5、利用少量目标域时频图对迁移CNN模型训练,由训练好的迁移CNN模型得到目标域深度特征集;步骤6、采用基于融合边际准则的平衡分布域适应方法对源域、目标域深度特征集进行处理,得到新源域、目标域深度特征集;步骤7、利用新源域深度特征集训练机器学习分类器,利用训练好的机器学习分类器实现故障诊断。本发明能够取得理想的故障诊断性能。