一种脉冲神经网络与量子电路协同图像分类方法及系统

    公开(公告)号:CN117437481A

    公开(公告)日:2024-01-23

    申请号:CN202311495995.9

    申请日:2023-11-10

    Applicant: 安徽大学

    Abstract: 本发明公开了一种脉冲神经网络与量子电路协同图像分类方法及系统,涉及计算机视觉和量子机器学习技术领域,通过将脉冲神经网络和量子电路各自生成的特征向量合并,实现了更全面和准确的特征信息提取,从而显著提高了图像分类的准确性。此方法的另一个关键优势在于其能够更好地捕捉图像中的动态特征,从而提高了对复杂图像的分类能力。此外,结合脉冲神经网络和量子电路的优势,一方面使得特征数据更接近生物大脑的信息处理方式,同时也获得了更高维度的特征信息。这种综合方法还增强了对噪声和变形等干扰的抵抗能力,提高了在复杂环境下的图像分类性能。

Patent Agency Ranking