-
公开(公告)号:CN116883364A
公开(公告)日:2023-10-13
申请号:CN202310869642.4
申请日:2023-07-17
Applicant: 安徽大学
IPC: G06T7/00 , G06N3/045 , G06N3/0464 , G06N3/0499 , G06N3/08 , G06N3/084 , G06V10/82 , G06V10/774 , G06V10/42 , G06V10/44
Abstract: 本发明涉及一种基于CNN和Transformer的苹果叶片病害识别方法,包括:采集苹果叶片病害图像,并进行处理;对初始苹果叶片病害图像样本中的图像进行预处理,获得初始特征图,初始特征图组成苹果叶片病害图像训练集;基于CNN模型和Transformer模型构建苹果叶片病害图像识别模型;将苹果叶片病害图像训练集输入苹果叶片病害识别模型中进行训练;获取待检测的苹果叶片病害图像并进行预处理;将预处理后的待检测的苹果叶片病害图像输入训练后的苹果叶片病害识别模型,得到苹果叶片病害识别结果。本发明通过将Transformer模型融合到CNN模型中,实现对苹果叶片图像病害的准确识别;实现对苹果叶片病害的全局和局部信息的综合建模。
-
公开(公告)号:CN118506294A
公开(公告)日:2024-08-16
申请号:CN202410576131.8
申请日:2024-05-10
Applicant: 安徽大学
Abstract: 本发明涉及一种基于强化学习的交通流量统计方法,包括:采集交通场景的视频数据,获得初始视频样本;进行预处理;将预处理后的视频图像输入YOLOv8网络模型,进行目标检测;采用改进的SORT算法对检测出的预处理后的视频图像中的车辆进行跟踪;结合DDPG模型,优化目标跟踪策略,得到目标跟踪模型;将待统计的交通场景视频数据输入目标跟踪模型中,目标跟踪模型输出统计结果。本发明采用YOLOv8模型进行目标检测,能够快速准确地检测交通场景中的车辆;改进了SORT算法,从而提高了目标跟踪的准确度,额外引入强化学习技术即DDPG模型,通过学习车辆行驶时的特征,针对每个位置进行目标预测,有效提高了目标的预测精度。
-