一种针对传感器数据的无监督异常检测方法

    公开(公告)号:CN110826642A

    公开(公告)日:2020-02-21

    申请号:CN201911116431.3

    申请日:2019-11-15

    Abstract: 本发明公开了一种针对传感器数据的无监督异常检测方法,包括以下步骤:(101)、获取历史数据;(102)、建立训练模型,通过历史数据对训练模型进行训练;(103)、重新以固定时间间隔获取实时采集的传感器数据;(104)、对实时采集的传感器数据进行检测;(105)、输出检测出的异常数据。本发明改进了现有技术的相关算法和流程,提出了一个在线式无监督检测技术的方法,在大大地提高了异常数据检测的正确率的同时大大降低了检测时间。

    基于深度学习的无线传感器高维数据实时异常检测方法

    公开(公告)号:CN110309886B

    公开(公告)日:2022-09-20

    申请号:CN201910610145.6

    申请日:2019-07-08

    Abstract: 本发明公开了一种基于深度学习的无线传感器高维数据异常检测方法,包括以下步骤:(101)、获取历史数据;(102)、建立DBN‑QSSVM混合模型;(103)、利用传感器历史数据对混合模型进行训练;(104)、采集待检测的传感器测试数据;(105)、利用(103)中训练好的DBN‑QSSVM混合模型对传感器测试数据进行异常检测;(106)、输出传感器测试数据中的异常数据。本发明改进了现有技术的相关算法和流程,提出了一个在处理高维度数据时,实现在线检测技术的方法,可以在不降低数据异常检测方法准确性的情况下,大大降低该方法的空间和时间复杂度,从而更加适用于大规模高维数据异常检测。

    一种针对传感器数据的无监督异常检测方法

    公开(公告)号:CN110826642B

    公开(公告)日:2023-03-24

    申请号:CN201911116431.3

    申请日:2019-11-15

    Abstract: 本发明公开了一种针对传感器数据的无监督异常检测方法,包括以下步骤:(101)、获取历史数据;(102)、建立训练模型,通过历史数据对训练模型进行训练;(103)、重新以固定时间间隔获取实时采集的传感器数据;(104)、对实时采集的传感器数据进行检测;(105)、输出检测出的异常数据。本发明改进了现有技术的相关算法和流程,提出了一个在线式无监督检测技术的方法,在大大地提高了异常数据检测的正确率的同时大大降低了检测时间。

    一种基于变分自编码器和对抗生成网络的图像增广模型训练方法及图像分类方法

    公开(公告)号:CN114386534A

    公开(公告)日:2022-04-22

    申请号:CN202210111331.7

    申请日:2022-01-29

    Abstract: 本发明公开了一种基于变分自编码器和对抗生成网络的图像增广模型训练方法及图像分类方法,该方法将可见类训练图像的视觉特征和语义特征分别输入视觉模态和语义模态变分自编码器中对应生成第一伪视觉特征和伪语义特征,并将其输入生成器网络中生成第二伪视觉特征,再利用判别器网络判别真实特征和生成的特征,利用可见类训练图像数据集对变分自编码器对抗生成网络模型进行训练。对于零样本图像分类,在可见类上训练完成的模型生成未见类训练图像的伪视觉特征并结合类别标签训练分类器对未见类图像进行分类;能够有效融合图像的视觉信息和语义信息,生成更接近于真实数据分布且高质量的可见类和未见类图像,提高零样本图像分类准确率。

    基于深度学习的无线传感器高维数据实时异常检测方法

    公开(公告)号:CN110309886A

    公开(公告)日:2019-10-08

    申请号:CN201910610145.6

    申请日:2019-07-08

    Abstract: 本发明公开了一种基于深度学习的无线传感器高维数据异常检测方法,包括以下步骤:(101)、获取历史数据;(102)、建立DBN-QSSVM混合模型;(103)、利用传感器历史数据对混合模型进行训练;(104)、采集待检测的传感器测试数据;(105)、利用(103)中训练好的DBN-QSSVM混合模型对传感器测试数据进行异常检测;(106)、输出传感器测试数据中的异常数据。本发明改进了现有技术的相关算法和流程,提出了一个在处理高维度数据时,实现在线检测技术的方法,可以在不降低数据异常检测方法准确性的情况下,大大降低该方法的空间和时间复杂度,从而更加适用于大规模高维数据异常检测。

Patent Agency Ranking