-
公开(公告)号:CN110516165B
公开(公告)日:2022-09-06
申请号:CN201910802620.X
申请日:2019-08-28
Applicant: 安徽农业大学
IPC: G06F16/9536 , G06Q30/02
Abstract: 本发明公开了一种基于文本UGC的混合神经网络跨领域推荐方法,目标域特征提取模块根据用户和物品ID为用户和物品分别构建隐因子嵌入矩阵,得到目标域用户、物品的特征向量;所述的辅助域物品特征迁移模块通过模拟类因子分解机模型将用户在两域的特征进行对应位置相乘的交互运算,从而得到两域物品间的关联特征向量,将该向量与目标域用户、物品特征向量在模型顶层进行连接,得到最终的用户‑物品联合特征向量;最后进行Top N物品推荐。本发明为端到端的深度学习跨领域推荐方法,同时自动、高效地利用两域文本UGC,通过深度学习方法挖掘两域物品间的关联特征,可有效提高目标域的物品推荐精度及缓解数据稀疏和冷启动问题。
-
公开(公告)号:CN112115377A
公开(公告)日:2020-12-22
申请号:CN202010951695.7
申请日:2020-09-11
Applicant: 安徽农业大学
IPC: G06F16/9536 , G06N3/04 , G06N3/08 , G06Q30/06 , G06Q50/00
Abstract: 本发明公开了一种基于社交关系的图神经网络链路预测推荐方法,建立用户——物品二部图,根据用户之间的社交关系构建含有用户社交关系的物品互动拓扑图。将评论文本和购买关系作为节点信息的来源,使用Bert进行文本数据和网络结构的特征提取工作,以得到每个节点的初始特征向量。通过在该GNN上使用残差连接的方式,使得图中的节点信息尽可能地保留原始图谱的的结构信息,并得到更新后的节点信息。最后,通过链路预测算法得到用户对物品的偏好程度,并且针对得到的预测评分,采用Top‑n推荐,生成推荐物品列表。本发明通过评论对节点特征进行个性化描述,并且能将用户——物品构成拓扑图的结构信息充分运用,从而进行更有效的推荐。
-
公开(公告)号:CN112115377B
公开(公告)日:2022-05-27
申请号:CN202010951695.7
申请日:2020-09-11
Applicant: 安徽农业大学
IPC: G06F16/9536 , G06N3/04 , G06N3/08 , G06Q30/06 , G06Q50/00
Abstract: 本发明公开了一种基于社交关系的图神经网络链路预测推荐方法,建立用户——物品二部图,根据用户之间的社交关系构建含有用户社交关系的物品互动拓扑图。将评论文本和购买关系作为节点信息的来源,使用Bert进行文本数据和网络结构的特征提取工作,以得到每个节点的初始特征向量。通过在该GNN上使用残差连接的方式,使得图中的节点信息尽可能地保留原始图谱的的结构信息,并得到更新后的节点信息。最后,通过链路预测算法得到用户对物品的偏好程度,并且针对得到的预测评分,采用Top‑n推荐,生成推荐物品列表。本发明通过评论对节点特征进行个性化描述,并且能将用户——物品构成拓扑图的结构信息充分运用,从而进行更有效的推荐。
-
公开(公告)号:CN111782765A
公开(公告)日:2020-10-16
申请号:CN202010590113.7
申请日:2020-06-24
Applicant: 安徽农业大学
IPC: G06F16/33 , G06F16/9535 , G06Q30/06 , G06F40/289
Abstract: 本发明公开了一种基于图注意力机制的推荐方法,根据用户——物品购买行为建立用户——物品二部图。将用户评论文本和物品描述文本作为节点信息的来源,使用word2vec方法进行文本数据的特征提取工作,以得到每个节点的初始特征向量。通过在该二部图上搭建图注意力网络的方式,使得二部图中的节点信息可实现以注意力机制为核心的聚合操作,并得到更新后的节点信息。最后,通过MLP全连接网络将更新后的节点信息作为输入,经过多层映射后得到用户对物品的预测评分,针对得到的预测评分采用Top-n推荐生成推荐物品列表。本发明能更精确的帮助用户分析对物品的偏好程度,找到用户的关注点,从而进行更有效的推荐。
-
公开(公告)号:CN112131469A
公开(公告)日:2020-12-25
申请号:CN202011001987.0
申请日:2020-09-22
Applicant: 安徽农业大学
IPC: G06F16/9535 , G06F40/30 , G06K9/62 , G06N3/04
Abstract: 本发明公开了一种基于评论文本的深度学习推荐方法,运用BERT模型得到用户和物品语义特征和特征向量矩阵;运用BLSTM模型,结合CNN对向量矩阵进行卷积、最大池化和全连接操作,分别得到用户特征和物品特征的最终表示;通过MLP全连接网络将得到的用户特征和物品特征表示的拼接作为输入,运用Top‑N排序,生成推荐列表。本发明运用BERT模型进行词嵌入特征提取,避免了一词多义的失配问题,BLSTM模型避免了单向LSTM无法获取从后向前的语义信息和对句子的表述缺乏完整性的问题,分别从正向和逆向进行句子的语义编码,获得更精准的句子向量表示,获得更精确的隐表示,通过CNN提取局部语义特征,进行有效的推荐。
-
公开(公告)号:CN110516165A
公开(公告)日:2019-11-29
申请号:CN201910802620.X
申请日:2019-08-28
Applicant: 安徽农业大学
IPC: G06F16/9536 , G06Q30/02
Abstract: 本发明公开了一种基于文本UGC的混合神经网络跨领域推荐方法,目标域特征提取模块根据用户和物品ID为用户和物品分别构建隐因子嵌入矩阵,得到目标域用户、物品的特征向量;所述的辅助域物品特征迁移模块通过模拟类因子分解机模型将用户在两域的特征进行对应位置相乘的交互运算,从而得到两域物品间的关联特征向量,将该向量与目标域用户、物品特征向量在模型顶层进行连接,得到最终的用户-物品联合特征向量;最后进行Top N物品推荐。本发明为端到端的深度学习跨领域推荐方法,同时自动、高效地利用两域文本UGC,通过深度学习方法挖掘两域物品间的关联特征,可有效提高目标域的物品推荐精度及缓解数据稀疏和冷启动问题。
-
-
-
-
-