-
公开(公告)号:CN111523055A
公开(公告)日:2020-08-11
申请号:CN202010354818.9
申请日:2020-04-28
Applicant: 安徽农业大学
IPC: G06F16/9536 , G06F40/247 , G06F40/289 , G06F16/9535 , G06F16/332 , G06F17/16
Abstract: 本发明设计了一种基于农产品特征属性评论倾向的协同推荐算法及系统,解决目前电商平台中农产品推荐不够精准的问题;本发明改进传统协同过滤推荐算法只考虑用户评分的单一性,提出将用户评分结合评论情感倾向程度加权,用户评论中对农产品特征属性倾向进行量化,作为计算用户相似度的重要参数的改进方法,结合用户评分构建出用户点评模型矩阵;在计算用户相似度时使用矩阵代替传统推荐算法中用户评分进行计算,综合考虑用户评分和评论信息进行邻居集查找,最终确定推荐农产品集;本方法与传统协同过滤推荐算法相比,除了考虑评分之外,将不同用户评论信息中的潜在联系作为参数进行邻居集查找,有效地提高了电商平台中农产品推荐的精准度。
-
公开(公告)号:CN111523055B
公开(公告)日:2023-04-07
申请号:CN202010354818.9
申请日:2020-04-28
Applicant: 安徽农业大学
IPC: G06F16/9536 , G06F40/247 , G06F40/289 , G06F16/9535 , G06F16/332 , G06F17/16
Abstract: 本发明设计了一种基于农产品特征属性评论倾向的协同推荐算法及系统,解决目前电商平台中农产品推荐不够精准的问题;本发明改进传统协同过滤推荐算法只考虑用户评分的单一性,提出将用户评分结合评论情感倾向程度加权,用户评论中对农产品特征属性倾向进行量化,作为计算用户相似度的重要参数的改进方法,结合用户评分构建出用户点评模型矩阵;在计算用户相似度时使用矩阵代替传统推荐算法中用户评分进行计算,综合考虑用户评分和评论信息进行邻居集查找,最终确定推荐农产品集;本方法与传统协同过滤推荐算法相比,除了考虑评分之外,将不同用户评论信息中的潜在联系作为参数进行邻居集查找,有效地提高了电商平台中农产品推荐的精准度。
-