基于张量域曲率分析的高动态范围图像质量评价方法

    公开(公告)号:CN108010023A

    公开(公告)日:2018-05-08

    申请号:CN201711297233.2

    申请日:2017-12-08

    Applicant: 宁波大学

    Abstract: 本发明提供了一种基于张量域曲率分析的高动态范围图像质量评价方法,该方法中的张量分解可以保持HDR图像绝大多数颜色信息,而曲率分析可以提取HDR图像的结构信息;通过张量分解和曲率分析的结合来构造一个有效的特征集,用来表征HDR图像块的不同失真程度;随后HDR图像的局部特征从利用特征集和带标签的稀疏字典重建得到的标签矩阵中提取;最终,通过聚合HDR图像的局部特征和全局特征得到图像的预测质量。本发明方法在二个公开的数据库进行测试,实验结果表明,其性能指标均优于其它无参考度量,这意味着本发明与人类视觉感知的一致性较高。

    基于张量域曲率分析的高动态范围图像质量评价方法

    公开(公告)号:CN108010023B

    公开(公告)日:2020-03-27

    申请号:CN201711297233.2

    申请日:2017-12-08

    Applicant: 宁波大学

    Abstract: 本发明提供了一种基于张量域曲率分析的高动态范围图像质量评价方法,该方法中的张量分解可以保持HDR图像绝大多数颜色信息,而曲率分析可以提取HDR图像的结构信息;通过张量分解和曲率分析的结合来构造一个有效的特征集,用来表征HDR图像块的不同失真程度;随后HDR图像的局部特征从利用特征集和带标签的稀疏字典重建得到的标签矩阵中提取;最终,通过聚合HDR图像的局部特征和全局特征得到图像的预测质量。本发明方法在二个公开的数据库进行测试,实验结果表明,其性能指标均优于其它无参考度量,这意味着本发明与人类视觉感知的一致性较高。

Patent Agency Ranking