一种信息增益混合邻域粗糙集的高维度特征选择方法

    公开(公告)号:CN109934278B

    公开(公告)日:2023-06-27

    申请号:CN201910168981.3

    申请日:2019-03-06

    Abstract: 本发明公开了一种信息增益混合邻域粗糙集的高维度特征选择方法,具体步骤包括如下:步骤一:数据预处理;步骤二:图像分割;步骤三:特征提取;步骤四:特征归一化;步骤五:基于信息增益的特征选择;步骤六:基于领域粗糙集的特征选择;步骤七:对两次约简结果进行分类识别。本发明公开提供了一种信息增益混合邻域粗糙集的高维度特征选择方法,并从理论层面分析两阶段约简算法的可行性。算法可以提高算法的正确率,有效降低时间复杂度,并且综合对比不同方法构建的高维特征选择算法的性能,确保本文方法的优越性,从模型方法的逐步选择上保证结果的科学性,对肺部肿瘤良恶性的识别具有一定的参考价值。

    一种信息增益混合邻域粗糙集的高维度特征选择方法

    公开(公告)号:CN109934278A

    公开(公告)日:2019-06-25

    申请号:CN201910168981.3

    申请日:2019-03-06

    Abstract: 本发明公开了一种信息增益混合邻域粗糙集的高维度特征选择方法,具体步骤包括如下:步骤一:数据预处理;步骤二:图像分割;步骤三:特征提取;步骤四:特征归一化;步骤五:基于信息增益的特征选择;步骤六:基于领域粗糙集的特征选择;步骤七:对两次约简结果进行分类识别。本发明公开提供了一种信息增益混合邻域粗糙集的高维度特征选择方法,并从理论层面分析两阶段约简算法的可行性。算法可以提高算法的正确率,有效降低时间复杂度,并且综合对比不同方法构建的高维特征选择算法的性能,确保本文方法的优越性,从模型方法的逐步选择上保证结果的科学性,对肺部肿瘤良恶性的识别具有一定的参考价值。

Patent Agency Ranking