一种基于GBDT模型的癫痫前期EEG信号识别方法与云端系统

    公开(公告)号:CN109924973A

    公开(公告)日:2019-06-25

    申请号:CN201910049378.3

    申请日:2019-01-18

    Abstract: 本发明公开了一种基于GBDT模型的癫痫前期EEG信号识别方法与云端系统,所述解码方法,包括以下步骤:步骤1,提取待测试癫痫病人的原始EEG时间序列信号,对其进行低通滤波后,提取信号均值、标准差、最大值、最小值、变异系数、80%分位数和20%分位数作为特征;步骤2,基于小波分解算法,把低通滤波后的信号分解为d1-d5五个不同分辨率下的子信号;步骤3,利用功率谱分析,提取五个不同分辨率下的子信号的信号强度;步骤4,利用GBDT机器学习模型进行预测:将得到的五个不同分辨率下的子信号的信号强度输入到所述GBDT机器学习模型,以预测出病人是否处于癫痫前状态;步骤5,返回模型预测结果。本发明预测精准度高,便于维护。

Patent Agency Ranking