一种基于RGBD融合网络的手部姿态估计系统及方法

    公开(公告)号:CN110175566B

    公开(公告)日:2022-12-23

    申请号:CN201910448208.2

    申请日:2019-05-27

    Abstract: 本发明提供一种基于RGBD融合网络的手部姿态估计系统及方法。本发明系统包括全局深度特征提取模块、残差模块、多模态特征融合模块、分支并行干扰消除模块,全局深度特征提取模块,采用平行的两路交叉融合的残差网络,上路为高分辨率的特征图,下路为低分辨率特征图,通过交叉融合多分辨率的信息来进行多尺度特征融合,最终在高分辨率特征图预测网络输出;系统的输入部分分为深度图像处理支路和RGB彩色图像处理支路,两个支路所提取的特征,进行多模态融合后形成全局特征,送入分支并行干扰消除模块进行手部分支的特征提取,得到强化的手部分支特征,用于最终的关节位置预测。本发明主要通过彩色图像与深度图像的信息综合,达到具有较高准确度的手部姿态估计。

    一种基于RGBD融合网络的手部姿态估计系统及方法

    公开(公告)号:CN110175566A

    公开(公告)日:2019-08-27

    申请号:CN201910448208.2

    申请日:2019-05-27

    Abstract: 本发明提供一种基于RGBD融合网络的手部姿态估计系统及方法。本发明系统包括全局深度特征提取模块、残差模块、多模态特征融合模块、分支并行干扰消除模块,全局深度特征提取模块,采用平行的两路交叉融合的残差网络,上路为高分辨率的特征图,下路为低分辨率特征图,通过交叉融合多分辨率的信息来进行多尺度特征融合,最终在高分辨率特征图预测网络输出;系统的输入部分分为深度图像处理支路和RGB彩色图像处理支路,两个支路所提取的特征,进行多模态融合后形成全局特征,送入分支并行干扰消除模块进行手部分支的特征提取,得到强化的手部分支特征,用于最终的关节位置预测。本发明主要通过彩色图像与深度图像的信息综合,达到具有较高准确度的手部姿态估计。

Patent Agency Ranking