-
公开(公告)号:CN114218850A
公开(公告)日:2022-03-22
申请号:CN202111317573.3
申请日:2021-11-09
Applicant: 大连理工大学
Abstract: 本发明属于知识表示技术领域,涉及一种异构多关系图表示学习方法。为了降低参数数量和计算复杂度。本发明将节点和关系在低维度欧式空间中进行向量嵌入,给定头节点和关系,通过双层栈式“旋转‑平移”变换模块,利用关系向量对头节点向量进行空间变换,经过关系自适应的向量聚合运算,计算变换后的头节点向量和尾节点向量的空间距离,该距离作为三元组评分,用于评估三元组的真实性概率。本发明可以应用于各领域异构多关系图的自动补全任务,大大降低了链接预测计算的时间复杂度和空间复杂度,使得基于图表示学习的异构图补全方法更好地应用于实际大规模异构多关系图的业务场景。
-
公开(公告)号:CN113656598A
公开(公告)日:2021-11-16
申请号:CN202110952568.3
申请日:2021-08-19
Applicant: 大连理工大学
IPC: G06F16/36 , G06F16/901 , G06F40/205
Abstract: 一种基于全局图注意力和局部图注意力的论文摘要生成方法,从输入的知识图中,通过全局图注意力和局部图注意力提取图结构特征,应用于指导论文摘要生成,该方法可以更好抓住各个实体间的关系,提高论文摘要生成效果。该方法主要包括:图结构转换、特征提取、解码生成。将知识图的每一条边,替换成两个表示关系方向的节点,将原图转换成连通无向图;通过多头自注意力计算顶点与图中其它顶点的注意力分布更新节点向量,获取全局特征表示;之后通过多头自注意力计算顶点与直接相连顶点的注意力分布更新节点向量,获取局部细节特征;最后在解码生成部分使用复制机制,从知识图中复制输入信息作为输出。
-
公开(公告)号:CN113656598B
公开(公告)日:2024-12-03
申请号:CN202110952568.3
申请日:2021-08-19
Applicant: 大连理工大学
IPC: G06F16/36 , G06F16/901 , G06F40/205
Abstract: 一种基于全局图注意力和局部图注意力的论文摘要生成方法,从输入的知识图中,通过全局图注意力和局部图注意力提取图结构特征,应用于指导论文摘要生成,该方法可以更好抓住各个实体间的关系,提高论文摘要生成效果。该方法主要包括:图结构转换、特征提取、解码生成。将知识图的每一条边,替换成两个表示关系方向的节点,将原图转换成连通无向图;通过多头自注意力计算顶点与图中其它顶点的注意力分布更新节点向量,获取全局特征表示;之后通过多头自注意力计算顶点与直接相连顶点的注意力分布更新节点向量,获取局部细节特征;最后在解码生成部分使用复制机制,从知识图中复制输入信息作为输出。
-
-