-
公开(公告)号:CN116704272A
公开(公告)日:2023-09-05
申请号:CN202210180289.4
申请日:2022-02-25
Applicant: 复旦大学
IPC: G06V10/77 , G06V10/80 , G06V10/764 , G06V10/82 , G06F16/58 , G06N3/0464 , G06N3/08 , G06N5/04
Abstract: 本发明公开了用于医学视觉‑语言多模态任务的文本嵌入表示方法,包括:步骤1,获取带有类别标签的医学图像数据集,进行预处理,同时划分为测试集和训练集;步骤2,预训练一个基于Transformer块的上下文信息特征的神经网络模型并进行优化训练;步骤3,获取带有医学图像‑文本对的数据集,并进行标准化处理,进行多分类预测,得到图像‑标签‑文本的三元组对;步骤4,对三元组对执行预定操作,得到图像标签的文本特征表示和图像文本对中文本的特征表示;步骤5,将图像标签的文本特征表示融入到图像文本对中文本的特征表示中,得到联合嵌入特征表示;步骤6,使用t‑SNE算法将联合嵌入特征表示降维至二维空间中,从而在隐式嵌入空间中观察特征分布。
-
公开(公告)号:CN111144406B
公开(公告)日:2023-05-02
申请号:CN201911332440.6
申请日:2019-12-22
Applicant: 复旦大学
Abstract: 本发明属于机器视觉图像处理技术领域,具体为一种太阳能面板清洁机器人自适应ROI目标定位方法。本发明利用目标在两帧图像中位置变化有限的特点,将上一帧的检测结果融合传感器运动信息补偿目标位置变化,估计出目标在当前图像中可能出现的感兴趣区域,缩小了检测范围,避免了全图扫描目标的大计算量和无用背景区域引入的干扰,专注于有效区域,能够实时高效精准地检测目标。本发明解决了清洁机器人在太阳能面板上由于检测范围广、背景复杂、运动变化导致的运算量大、实时性差、干扰多、容易丢失目标等问题,极大地提升了其检测效率和稳定性,使得清洁机器人快速、高效、精准地完成太阳能面板全自动清洁工作。
-
公开(公告)号:CN111144406A
公开(公告)日:2020-05-12
申请号:CN201911332440.6
申请日:2019-12-22
Applicant: 复旦大学
Abstract: 本发明属于机器视觉图像处理技术领域,具体为一种太阳能面板清洁机器人自适应ROI目标定位方法。本发明利用目标在两帧图像中位置变化有限的特点,将上一帧的检测结果融合传感器运动信息补偿目标位置变化,估计出目标在当前图像中可能出现的感兴趣区域,缩小了检测范围,避免了全图扫描目标的大计算量和无用背景区域引入的干扰,专注于有效区域,能够实时高效精准地检测目标。本发明解决了清洁机器人在太阳能面板上由于检测范围广、背景复杂、运动变化导致的运算量大、实时性差、干扰多、容易丢失目标等问题,极大地提升了其检测效率和稳定性,使得清洁机器人快速、高效、精准地完成太阳能面板全自动清洁工作。
-
-