一种基于轮廓的小样本语义分割方法

    公开(公告)号:CN112419352B

    公开(公告)日:2022-05-20

    申请号:CN202011326151.8

    申请日:2020-11-24

    Applicant: 复旦大学

    Abstract: 本发明属于数字图像智能处理技术领域,具体为一种基于轮廓的小样本语义分割方法。本发明方法包括:利用深度卷积神经网络提取参考图像和待分割图像各自的特征;使用轮廓生成模块生成待分割图像中较粗糙的物体轮廓;使用轮廓优化模块将较粗糙的物体轮廓优化得到更精细的轮廓;使用标签平均池化操作获取参考图像对应的语义原型;使用区域平均池化操作获取待分割图像中轮廓对应物体的语义原型;比对语义原型进而确定是否属于相同的语义类别。实验结果表明,本发明可以生成精确的分割图,有效解决了小样本语义分割问题。

    一种基于轮廓的小样本语义分割方法

    公开(公告)号:CN112419352A

    公开(公告)日:2021-02-26

    申请号:CN202011326151.8

    申请日:2020-11-24

    Applicant: 复旦大学

    Abstract: 本发明属于数字图像智能处理技术领域,具体为一种基于轮廓的小样本语义分割方法。本发明方法包括:利用深度卷积神经网络提取参考图像和待分割图像各自的特征;使用轮廓生成模块生成待分割图像中较粗糙的物体轮廓;使用轮廓优化模块将较粗糙的物体轮廓优化得到更精细的轮廓;使用标签平均池化操作获取参考图像对应的语义原型;使用区域平均池化操作获取待分割图像中轮廓对应物体的语义原型;比对语义原型进而确定是否属于相同的语义类别。实验结果表明,本发明可以生成精确的分割图,有效解决了小样本语义分割问题。

Patent Agency Ranking