-
公开(公告)号:CN106682694A
公开(公告)日:2017-05-17
申请号:CN201611223417.X
申请日:2016-12-27
Applicant: 复旦大学
Abstract: 本发明属于数字图像处理技术领域,具体为一种基于深度学习的敏感图像识别方法。本发明主要包括如下步骤:对敏感图像进行预处理;将预处理后的全部敏感图像数据库分为训练集和测试集两部分,其中训练集又分为train和validation两个部分,比例约为5:1;将训练集图像用于深度卷积神经网络训练,训练出来的是卷积神经网络各层之间的参数;训练完成后,用训练的模型初始化测试用的神经网络,测试用的神经网络和训练的网络结构相同;将测试用的敏感图像输入到初始化后的深度神经网络,进行识别测试,实现敏感图像的识别;本发明不需要人为参与和调整,能够完成特征的提取和分类的功能,提供了一种可靠的高性能的基于深度学习的敏感图像识别技术。