-
公开(公告)号:CN109447242B
公开(公告)日:2021-08-20
申请号:CN201811176057.1
申请日:2018-10-10
Applicant: 复旦大学
Abstract: 本发明为基于迭代学习的图像描述重生成系统及方法,包括:深度卷积网络、第一轮循环神经网络、知识抽取模块以及第二轮循环神经网络。深度卷积网络对图像进行细粒度的编码。第一轮循环神经网络为图像生成初步的句子描述以及视觉注意力图序列。知识抽取模块根据注意力图,利用显著性区域检测算法来生成显著性区域掩码。此外,知识抽取模块从初步生成的句子描述中提取名词序列作为图像的主题词。第二轮循环神经网络通过三种机制将显著性区域掩码和主题词融入第二轮训练,即基于显著性区域掩码的全局图像视觉表示精炼,基于主题词的多模态图像表示优化以及基于主题词的多模态注意力机制。基于上述机制,第二轮循环神经网络可生成精炼的图像描述。
-
公开(公告)号:CN109447242A
公开(公告)日:2019-03-08
申请号:CN201811176057.1
申请日:2018-10-10
Applicant: 复旦大学
Abstract: 本发明为基于迭代学习的图像描述重生成系统及方法,包括:深度卷积网络、第一轮循环神经网络、知识抽取模块以及第二轮循环神经网络。深度卷积网络对图像进行细粒度的编码。第一轮循环神经网络为图像生成初步的句子描述以及视觉注意力图序列。知识抽取模块根据注意力图,利用显著性区域检测算法来生成显著性区域掩码。此外,知识抽取模块从初步生成的句子描述中提取名词序列作为图像的主题词。第二轮循环神经网络通过三种机制将显著性区域掩码和主题词融入第二轮训练,即基于显著性区域掩码的全局图像视觉表示精炼,基于主题词的多模态图像表示优化以及基于主题词的多模态注意力机制。基于上述机制,第二轮循环神经网络可生成精炼的图像描述。
-