-
公开(公告)号:CN110334571A
公开(公告)日:2019-10-15
申请号:CN201910264654.8
申请日:2019-04-03
Applicant: 复旦大学
Abstract: 本发明属于图像处理技术领域,具体为一种基于卷积神经网络的毫米波图像人体隐私保护方法。本发明首先将人体划分为十个区域,并且针对十个区域设计人体结构数据集,训练深度学习模型,来检测受检人的人体区域;然后利用人体区域坐标来给人体隐私部位添加遮挡;最后利用人体结构信息,结合最近邻算法、坐标投影算法,将违禁物体预测框投影到卡通图片的对应位置。外部用户只能观察到卡通图片及其对应的违禁物体预测框,从而保护了受检人员的隐私安全。
-
公开(公告)号:CN110245675A
公开(公告)日:2019-09-17
申请号:CN201910264671.1
申请日:2019-04-03
Applicant: 复旦大学
Abstract: 本发明属于图像处理技术领域,具体为一种基于毫米波图像人体上下文信息的危险物体检测方法。本发明首先利用卷积神经网络对输入的毫米波图像进行下采样操作,在高层特征空间中使用自顶而上结构来恢复人体上下文信息,将下采样阶段获得到的人体携带物与自顶而下结构获得的人体上下文信息相融合,共同预测前景目标;另外,针对初始化的候选框不能有效地匹配地面真实的问题,本发明采用辅助监督函数来给予初始化候选框坐标回归,在标准测试集与实际测试场景中提升模型的检出率。本发明可以实时、自动识别毫米波图像中的危险物体,大大提升安检、安防的效率。
-
公开(公告)号:CN110245675B
公开(公告)日:2023-02-10
申请号:CN201910264671.1
申请日:2019-04-03
Applicant: 复旦大学
IPC: G06V10/764 , G06V10/82 , G06V10/80 , G06V10/766 , G06V10/94 , G06V10/774
Abstract: 本发明属于图像处理技术领域,具体为一种基于毫米波图像人体上下文信息的危险物体检测方法。本发明首先利用卷积神经网络对输入的毫米波图像进行下采样操作,在高层特征空间中使用自顶而上结构来恢复人体上下文信息,将下采样阶段获得到的人体携带物与自顶而下结构获得的人体上下文信息相融合,共同预测前景目标;另外,针对初始化的候选框不能有效地匹配地面真实的问题,本发明采用辅助监督函数来给予初始化候选框坐标回归,在标准测试集与实际测试场景中提升模型的检出率。本发明可以实时、自动识别毫米波图像中的危险物体,大大提升安检、安防的效率。
-
公开(公告)号:CN110298226B
公开(公告)日:2023-01-06
申请号:CN201910264672.6
申请日:2019-04-03
Applicant: 复旦大学
IPC: G06V20/50 , G06V10/82 , G06V10/762 , G06V10/764 , G06V10/80 , G06V10/766 , G06V10/94 , G06N3/04
Abstract: 本发明属图像处理技术领域,具体为一种毫米波图像人体携带物的级联检测方法。为了解决毫米波图像中人体携带物较小的问题,本发明采用自顶而下(Top‑down)结构来获取到毫米波图像的上下文信息,通过上下文关系来完成对小目标的定位与识别;为了解决毫米波图像中正样本稀疏的问题,本发明采用级联模型的方式,利用第一个阶段的级联模型过滤负样本,与此同时,调整模型初始化候选框的坐标位置,给第二个阶段的级联模型提供有效的候选框信息;基于正负样本比例均衡、坐标位置准确的候选框,第二个阶段的级联模型进一步提升了模型的检出率,降低了模型的误报率。
-
公开(公告)号:CN110334571B
公开(公告)日:2022-12-20
申请号:CN201910264654.8
申请日:2019-04-03
Applicant: 复旦大学
IPC: G06V40/10 , G06V10/82 , G06V10/762 , G06V10/774 , G06V10/74 , G06N3/04 , G06T5/00
Abstract: 本发明属于图像处理技术领域,具体为一种基于卷积神经网络的毫米波图像人体隐私保护方法。本发明首先将人体划分为十个区域,并且针对十个区域设计人体结构数据集,训练深度学习模型,来检测受检人的人体区域;然后利用人体区域坐标来给人体隐私部位添加遮挡;最后利用人体结构信息,结合最近邻算法、坐标投影算法,将违禁物体预测框投影到卡通图片的对应位置。外部用户只能观察到卡通图片及其对应的违禁物体预测框,从而保护了受检人员的隐私安全。
-
公开(公告)号:CN110298226A
公开(公告)日:2019-10-01
申请号:CN201910264672.6
申请日:2019-04-03
Applicant: 复旦大学
Abstract: 本发明属图像处理技术领域,具体为一种毫米波图像人体携带物的级联检测方法。为了解决毫米波图像中人体携带物较小的问题,本发明采用自顶而下(Top-down)结构来获取到毫米波图像的上下文信息,通过上下文关系来完成对小目标的定位与识别;为了解决毫米波图像中正样本稀疏的问题,本发明采用级联模型的方式,利用第一个阶段的级联模型过滤负样本,与此同时,调整模型初始化候选框的坐标位置,给第二个阶段的级联模型提供有效的候选框信息;基于正负样本比例均衡、坐标位置准确的候选框,第二个阶段的级联模型进一步提升了模型的检出率,降低了模型的误报率。
-
-
-
-
-