基于自组织映射神经网络的遥感图像混合像元分解方法

    公开(公告)号:CN101221662A

    公开(公告)日:2008-07-16

    申请号:CN200810033321.6

    申请日:2008-01-31

    Applicant: 复旦大学

    Abstract: 本发明属于遥感图像处理技术领域,具体为一种基于自组织映射神经网络的遥感图像混合像元分解方法。该方法将自组织映射神经网络和模糊理论中的模糊隶属度相结合,来计算分解后的丰度值。同时,由于自组织映射神经网络的无目标函数的竞争学习特性,本方法摆脱了局部极值问题。此外,本发明自动满足混合像元分解问题所要求的两个约束:丰度值非负约束和丰度值和为1约束,有较好的混合像元分解结果,同时具有较强的抗噪声能力。新方法在基于多光谱和高光谱遥感图像的高精度的地物分类以及地面目标的检测和识别方面具有特别重要的应用价值。

    基于自组织映射神经网络的遥感图像混合像元分解方法

    公开(公告)号:CN101221662B

    公开(公告)日:2011-07-20

    申请号:CN200810033321.6

    申请日:2008-01-31

    Applicant: 复旦大学

    Abstract: 本发明属于遥感图像处理技术领域,具体为一种基于自组织映射神经网络的遥感图像混合像元分解方法。该方法将自组织映射神经网络和模糊理论中的模糊隶属度相结合,来计算分解后的丰度值。同时,由于自组织映射神经网络的无目标函数的竞争学习特性,本方法摆脱了局部极值问题。此外,本发明自动满足混合像元分解问题所要求的两个约束:丰度值非负约束和丰度值和为1约束,有较好的混合像元分解结果,同时具有较强的抗噪声能力。新方法在基于多光谱和高光谱遥感图像的高精度的地物分类以及地面目标的检测和识别方面具有特别重要的应用价值。

Patent Agency Ranking