-
公开(公告)号:CN119990203A
公开(公告)日:2025-05-13
申请号:CN202411812196.4
申请日:2024-12-10
Applicant: 国家计算机网络与信息安全管理中心 , 清华大学
IPC: G06N3/06 , G06F18/2431
Abstract: 本发明提供一种大模型安全神经元筛选方法和装置,方法包括:对基础大模型进行安全对齐,得到安全对齐模型;计算所述安全对齐模型和所述基础大模型的神经元激活差异;基于所述神经元激活差异,确定对所述基础大模型进行安全对齐时的安全神经元。本发明从模型自身内部的性质出发,不受任务形式限制,容易扩展,适用于大模型中的安全神经元发现,为进一步研究大模型的安全机理提供方案。
-
公开(公告)号:CN119990134A
公开(公告)日:2025-05-13
申请号:CN202411808989.9
申请日:2024-12-10
Applicant: 国家计算机网络与信息安全管理中心 , 清华大学
IPC: G06F40/30 , G06F40/284 , G06F40/237
Abstract: 本发明提供一种使用自述式提示与集成梯度的语义贡献识别方法及系统,包括:获取输入数据并编写特定的问题提示;将所述问题提示多次输入至预设的大语言模型,引导大语言模型自动识别并报告在决策过程中起到关键作用的词汇,生成关键词提议集合;基于所述关键词提议集合抽取关键词,生成第一语义贡献度列表;基于所述输入数据通过预设的公式进行集成梯度计算,生成第二语义贡献度列表;将所述第一语义贡献度列表和第二语义贡献度列表进行整合分析,确定对大语言模型决策有重大影响的词汇。本发明解决了现有技术中大语言模型行为解释单一方法的局限性问题,提高了模型解释的全面性和准确性,满足了在多种自然语言处理应用中对可解释性的要求。
-
公开(公告)号:CN114817512B
公开(公告)日:2023-03-14
申请号:CN202210738644.5
申请日:2022-06-28
Applicant: 清华大学
IPC: G06F16/332 , G06F16/31 , G06F16/36
Abstract: 本发明涉及人工智能技术领域,提供一种问答推理方法及装置,其中方法包括:确定推理目标问题的答案所需的至少一个算子;针对至少一个算子中至少部分需要访问知识库的算子,基于知识库中预先构建的知识元素的倒排索引结构,访问知识库,以得到算子的执行结果;基于至少一个算子的执行结果,得到答案。如此解决现有技术中推理引擎的推理效率不高的缺陷,由于确定的推理目标问题的答案所需的至少一个算子,能够展示出推理目标问题的答案的过程,透明可解释,并且,由于针对至少部分需要访问知识库的算子,基于知识库中预先构建的知识元素的倒排索引结构,访问知识库,以得到算子的执行结果,提高了算子的执行速度,进而提高了答案的推理效率。
-
公开(公告)号:CN114781471B
公开(公告)日:2022-12-27
申请号:CN202110614418.1
申请日:2021-06-02
Applicant: 清华大学
IPC: G06K9/62 , G06N3/04 , G06N3/08 , G06F40/295
Abstract: 本发明提供一种实体记录匹配方法及系统,该方法包括:获取待匹配的实体记录集合,所述实体记录集合中的实体记录是由实体的属性和属性值组成的;将所述实体记录集合输入到训练好的实体记录匹配模型,得到所述实体记录集合中实体记录之间的匹配结果,其中,所述训练好的实体记录匹配模型是由自监督学习方法训练后的神经网络和决策树算法训练后的决策树模型构建得到的。本发明通过神经网络对实体转换为属性值向量,利用自动构建的关键属性树,克服深度学习可解释性差的缺点,能将学习到的关键属性树转化成匹配规则,运用到其他数据集中;同时,本发明对应模型的训练仅需要少量的标记实体记录对,克服了现有方法需要大量标记实体记录对的缺点。
-
公开(公告)号:CN115617954B
公开(公告)日:2023-03-28
申请号:CN202211440775.1
申请日:2022-11-17
Applicant: 清华大学
IPC: G06F16/33 , G06F16/332 , G06N5/04
Abstract: 本发明涉及人工智能技术领域,提供一种问答方法、装置、电子设备及存储介质,其中方法包括:将问题输入生成模型,获得问题对应的推理程序;基于目标知识库执行问题对应的推理程序得到问题的答案;生成模型是基于目标知识库之外的外部知识库和对应的第一数据集,以及目标知识库和对应的第二数据集,进行训练得到的,第一数据集包括第一问题样本和对应的第一推理程序标签,第二数据集包括第二问题样本和对应的答案样本;生成模型用于通过解码程序的树形结构所转换的序列中每个位置的词汇得到问题对应的推理程序;或者,通过解析程序骨架以及程序骨架所需的参数得到问题对应的推理程序。解决平行语料缺失的问题,提升了问答性能。
-
公开(公告)号:CN115617954A
公开(公告)日:2023-01-17
申请号:CN202211440775.1
申请日:2022-11-17
Applicant: 清华大学
IPC: G06F16/33 , G06F16/332 , G06N5/04
Abstract: 本发明涉及人工智能技术领域,提供一种问答方法、装置、电子设备及存储介质,其中方法包括:将问题输入生成模型,获得问题对应的推理程序;基于目标知识库执行问题对应的推理程序得到问题的答案;生成模型是基于目标知识库之外的外部知识库和对应的第一数据集,以及目标知识库和对应的第二数据集,进行训练得到的,第一数据集包括第一问题样本和对应的第一推理程序标签,第二数据集包括第二问题样本和对应的答案样本;生成模型用于通过解码程序的树形结构所转换的序列中每个位置的词汇得到问题对应的推理程序;或者,通过解析程序骨架以及程序骨架所需的参数得到问题对应的推理程序。解决平行语料缺失的问题,提升了问答性能。
-
公开(公告)号:CN114781471A
公开(公告)日:2022-07-22
申请号:CN202110614418.1
申请日:2021-06-02
Applicant: 清华大学
IPC: G06K9/62 , G06N3/04 , G06N3/08 , G06F40/295
Abstract: 本发明提供一种实体记录匹配方法及系统,该方法包括:获取待匹配的实体记录集合,所述实体记录集合中的实体记录是由实体的属性和属性值组成的;将所述实体记录集合输入到训练好的实体记录匹配模型,得到所述实体记录集合中实体记录之间的匹配结果,其中,所述训练好的实体记录匹配模型是由自监督学习方法训练后的神经网络和决策树算法训练后的决策树模型构建得到的。本发明通过神经网络对实体转换为属性值向量,利用自动构建的关键属性树,克服深度学习可解释性差的缺点,能将学习到的关键属性树转化成匹配规则,运用到其他数据集中;同时,本发明对应模型的训练仅需要少量的标记实体记录对,克服了现有方法需要大量标记实体记录对的缺点。
-
公开(公告)号:CN114817512A
公开(公告)日:2022-07-29
申请号:CN202210738644.5
申请日:2022-06-28
Applicant: 清华大学
IPC: G06F16/332 , G06F16/31 , G06F16/36
Abstract: 本发明涉及人工智能技术领域,提供一种问答推理方法及装置,其中方法包括:确定推理目标问题的答案所需的至少一个算子;针对至少一个算子中至少部分需要访问知识库的算子,基于知识库中预先构建的知识元素的倒排索引结构,访问知识库,以得到算子的执行结果;基于至少一个算子的执行结果,得到答案。如此解决现有技术中推理引擎的推理效率不高的缺陷,由于确定的推理目标问题的答案所需的至少一个算子,能够展示出推理目标问题的答案的过程,透明可解释,并且,由于针对至少部分需要访问知识库的算子,基于知识库中预先构建的知识元素的倒排索引结构,访问知识库,以得到算子的执行结果,提高了算子的执行速度,进而提高了答案的推理效率。
-
公开(公告)号:CN119166767A
公开(公告)日:2024-12-20
申请号:CN202411153889.7
申请日:2024-08-21
Applicant: 清华大学
IPC: G06F16/332 , G06F16/33 , G06F16/36 , G06F40/205 , G06F40/30 , G06N5/022
Abstract: 本发明提供一种基于大语言模型的问答方法及系统,该方法包括:确定用户的当前问题和自然语言理解提示词;输入当前问题和自然语言理解提示词至预训练大语言模型,获得大语言模型根据自然语言理解策略输出的问题理解结果和待回答问题;在问题理解结果为事实性问题的情况下,基于语义解析从知识图谱检索答案;输入检索答案和答案校验提示词至预训练大语言模型,得到答案校验结果;在校验合理的情况下,将检索答案作为当前问题的最终答案;在校验不合理的情况下,大语言模型生成答案。本发明在多轮问答任务中能够基于上下文深入理解用户的问题,有效检索和整合不用的知识源的信息,从而准确、高效地提供当前问题的答案。
-
公开(公告)号:CN119670883A
公开(公告)日:2025-03-21
申请号:CN202411635486.6
申请日:2024-11-15
Applicant: 清华大学
IPC: G06N5/04 , G06N5/022 , G06F16/2453 , G06F16/2455
Abstract: 本发明提供一种基于原子知识算子的大语言模型异构知识推理方法及装置,其中的方法包括:基于原始待解答问题,构建原子推理树;其中,原子推理树包括父节点和叶节点,父节点中的根节点为原始待解答问题,父节点中的非根节点为由原始待解答问题分解得到的不同层级子问题,叶节点为由原始待解答问题分解得到的原子问题,每一叶节点对应一个原子知识算子,原子知识算子包括搜索算子、关系算子以及过滤算子;对于叶节点,基于大语言模型和原子知识算子,根据检索‑知识对原子问题进行推理;对于父节点,基于大语言模型,根据子节点推理答案、兄弟节点推理答案或检索‑知识对子问题进行推理;对原子推理树从叶节点到根节点自下而上进行推理,得到原始待解答问题的推理结果;其中,检索‑知识通过从多种异构知识源执行动态知识检索得到。该方法通过将原始待解答问题分解到原子级别的细粒度,并使原子推理树中的叶节点对应一个原子知识算子,实现了更精确的推理结果,与此同时,通过在每个子问题和原子问题节点允许从多种异构知识源动态检索知识,能够灵活应对不同类型的查询,提供了更丰富、准确和互补的信息,增强了算法的整体推理能力。
-
-
-
-
-
-
-
-
-