一种基于多任务学习的加密流量分类系统、方法、计算机及存储介质

    公开(公告)号:CN115563533A

    公开(公告)日:2023-01-03

    申请号:CN202211166951.7

    申请日:2022-09-23

    Abstract: 本发明为提高加密流量分类模型的泛化能力,提出一种基于多任务学习的加密流量分类方法。本发明包括:将采集到的带标签的加密流量数据按双向流分割,每条双向流的数据作为一个训练样本;提取所述训练样本的时间序列特征,将其做为多任务分类模型的输入;设置多任务分类模型的辅助任务和主任务,并设计辅助任务的类别划分器,为每条流量数据添加对应的辅助任务标签;构建基于软参数共享机制的多任务分类模型;将所述训练样本的时间序列特征输入多任务分类模型,根据各个任务对应的标签同时训练多个任务,每个任务都有独立的输出。

Patent Agency Ranking