一种基于改进Q学习算法的多目标云资源调度方法

    公开(公告)号:CN110515735A

    公开(公告)日:2019-11-29

    申请号:CN201910807351.6

    申请日:2019-08-29

    Inventor: 李成严 孙巍 宋月

    Abstract: 本发明提供了一种基于改进Q学习算法的多目标云资源调度方法。该方法通过Agent与环境进行不断交互,学习得到最优策略。本发明通过Cloudsim云计算仿真平台,随机生成不同任务和虚拟机,以同时优化任务的完成时间和运行成本为优化目标,设计一种基于改进Q学习算法的多目标云资源调度方法,采用自动更新权重因子的启发式动作选择策略加快Q学习算法的收敛速度,同时提高算法的寻优能力,以提高云资源的利用率,提高用户满意度,降低运营商成本。

    一种基于粒子群优化算法的云资源调度方法

    公开(公告)号:CN110599068A

    公开(公告)日:2019-12-20

    申请号:CN201910931052.3

    申请日:2019-09-29

    Inventor: 李成严 宋月 辛雪

    Abstract: 本发明提出了一种将改进的粒子群算法应用到云计算资源调度问题的方法,通过迭代来寻找最优的解决方案。采用Cloudsim仿真平台对资源调度所需要的任务和虚拟机进行随机生成;模拟云资源调度的过程,将粒子群算法与云资源调度问题相结合;转换云资源调度的问题模型,使本发明能够更符合实际情况;对使用的粒子群算法进行优化,主要是通过对粒子群的重新随机化,使得粒子提出局部最优,通过改变惯性权重,使得粒子搜索能力增强,使用正交初始化,使得粒子的搜索效率更高;根据每一次的迭代结果,使粒子根据全局最优和个体最优进行迭代更新,寻找更优的解;对调度的结果进行评价,最后获得最优解。本发明能够对云资源进行更好的调度,并且具有一定的可靠性,搜索最优解的能力更强。

Patent Agency Ranking