基于继承联邦学习的异构软件缺陷预测方法

    公开(公告)号:CN118885385A

    公开(公告)日:2024-11-01

    申请号:CN202410904782.5

    申请日:2024-07-07

    Abstract: 本发明涉及联邦学习、软件缺陷预测技术领域,公开了一种基于继承联邦学习的异构软件缺陷预测方法,解决了软件缺陷预测中单一数据集的数据不充分以及多源数据带来的数据异构和隐私性问题。该方法包括:对各本地数据集采用综合过采样Synthetic Minority Over‑sampling Technique combined with Tomek Links(SMOTETomek)算法和核主成分分析(Kernel Principal Component Analysis,KPCA)算法进行预处理;在本地训练阶段加入继承私有模型(Inherited Private Models,IPM),将历史训练中的模型知识进行迁移,共同参与本轮训练;在全局聚合阶段引入差异感知协作(Discrepancy‑aware Collaboration,DC)算法,考虑数据分布的情况下重新分配聚合权重。在迭代优化上采用了Ranger算法,由于参数更新上加入了多种不可逆的混合运算,因此能够加速收敛的同时有效保护数据隐私安全。

    基于联邦学习的高鲁棒性异构软件缺陷预测算法

    公开(公告)号:CN119312155A

    公开(公告)日:2025-01-14

    申请号:CN202411310183.7

    申请日:2024-09-19

    Abstract: 本发明属于联邦学习与软件缺陷预测技术领域,具体涉及一种基于联邦学习的高鲁棒性异构软件缺陷预测算法。该算法首先利用Tomek links和单边选择(One‑Side Selection,OSS)算法对参与方本地数据进行预处理,缓解类不平衡问题;通过卡方检验选出代表性特征子集,统一各参与方数据的特征数量。各参与方构建本地卷积神经网络,将数据划分为训练集和测试集。通过引入客户端置信度重新加权(Client Confidence Reweighting,CCR)和改进的Bootstrap Loss损失函数,增强模型在标签噪声条件下的鲁棒性,并通过KL散度进行知识交换,降低通信开销,提高模型性能。最终,模型经过训练和验证,实现了高效精准的软件缺陷预测,有效应对数据异构性和标签噪声问题,提升了预测精度和效率。

    一种改进YOLOv8的X射线安检图像危险品检测系统

    公开(公告)号:CN119048878A

    公开(公告)日:2024-11-29

    申请号:CN202411061740.6

    申请日:2024-11-02

    Abstract: 本发明属于目标检测技术领域,具体涉及一种改进YOLOv8的X射线安检图像危险品检测系统;该方法依次执行以下步骤:获取X射线危险品图像数据集并进行数据增强;搭建改进的YOLO‑GEMA网络模型,包括:在YOLOv8的Backbone和Neck中添加GELAN(Generalized Efficient Layer Aggregation Network);在YOLOv8的Neck中加入EMA(Efficient Multi‑ScaleAttention)注意力机制;最后采用inner‑CIoU改进损失函数加快收敛速度。利用训练集对改进的YOLOv8模型进行训练得到X射线安检图像检测模型;利用测试集对训练好的模型进行测试得到危险品检测结果。本发明通过使用改进的YOLOv8算法进行X射线安检图像的检测,能够更加精确的检测出危险品,提高安检效率。

Patent Agency Ranking