一种基于三元组多样范例集和梯度正则化的增量学习方法

    公开(公告)号:CN113610183B

    公开(公告)日:2022-06-03

    申请号:CN202110954054.1

    申请日:2021-08-19

    Abstract: 本发明提出了一种基于三元组多样范例集和梯度正则化的增量学习方法、计算机及存储介质,属于人工智能领域。首先,得到的预测样本特征和真实标签,并输入损失函数进行反向传播更新模型参数;其次,计算批次数据的原型表示;再其次,计算每个类别应保存的正例样本的数量和反例样本的数量;再其次,更新已有类别的范例集应存储的范例的数量;再其次,对正例集合范例集中的样本进行打分,根据样本的分数构建当前类别范例集;再其次,随机取样获得重演样本集,然后对重演样本集和批次数据中的样本进行前向传播;再其次,计算三种损失函数的梯度;最后,对三种不同梯度进行正则化,得到最终的梯度值进行反向传播更新。本发明解决了灾难性遗忘的问题。

    一种基于三元组多样范例集和梯度正则化的增量学习方法、计算机及存储介质

    公开(公告)号:CN113610183A

    公开(公告)日:2021-11-05

    申请号:CN202110954054.1

    申请日:2021-08-19

    Abstract: 本发明提出了一种基于三元组多样范例集和梯度正则化的增量学习方法、计算机及存储介质,属于人工智能领域。首先,得到的预测样本特征和真实标签,并输入损失函数进行反向传播更新模型参数;其次,计算批次数据的原型表示;再其次,计算每个类别应保存的正例样本的数量和反例样本的数量;再其次,更新已有类别的范例集应存储的范例的数量;再其次,对正例集合范例集中的样本进行打分,根据样本的分数构建当前类别范例集;再其次,随机取样获得重演样本集,然后对重演样本集和批次数据中的样本进行前向传播;再其次,计算三种损失函数的梯度;最后,对三种不同梯度进行正则化,得到最终的梯度值进行反向传播更新。本发明解决了灾难性遗忘的问题。

Patent Agency Ranking