一种基于YOLO v3的多尺度目标检测方法

    公开(公告)号:CN112801183A

    公开(公告)日:2021-05-14

    申请号:CN202110115719.X

    申请日:2021-01-28

    Abstract: 本发明公开了一种基于YOLO v3的多尺度目标检测方法,包括:S1、对数据集图像进行预处理,将图像数据调整到网络设定的尺寸;S2、在骨干网络中加入改进后的DenseNet对图像进行不同层次信息的提取,输出四个尺寸不同的特征图;S3、在输出的四个特征层之后加入空间金字塔模块;S4、将经过空间金字塔模块的特征图分别与上一层尺寸较大的特征图进行融合,构成四个尺寸的多尺寸预测机制。本发明从特征的角度出发,通过加入密集连接结构、空间金字塔结构和优化多尺度预测机制,将特征进行深层与浅层、局部与全局之间的深度融合,提高对各尺寸目标的检测精准度,可应用于实际生活各复杂场景下的目标检测。

    一种基于YOLO v3的多尺度目标检测方法

    公开(公告)号:CN112801183B

    公开(公告)日:2023-09-08

    申请号:CN202110115719.X

    申请日:2021-01-28

    Abstract: 本发明公开了一种基于YOLO v3的多尺度目标检测方法,包括:S1、对数据集图像进行预处理,将图像数据调整到网络设定的尺寸;S2、在骨干网络中加入改进后的DenseNet对图像进行不同层次信息的提取,输出四个尺寸不同的特征图;S3、在输出的四个特征层之后加入空间金字塔模块;S4、将经过空间金字塔模块的特征图分别与上一层尺寸较大的特征图进行融合,构成四个尺寸的多尺寸预测机制。本发明从特征的角度出发,通过加入密集连接结构、空间金字塔结构和优化多尺度预测机制,将特征进行深层与浅层、局部与全局之间的深度融合,提高对各尺寸目标的检测精准度,可应用于实际生活各复杂场景下的目标检测。

Patent Agency Ranking